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A Data Appendix

A.1 Sample Selection

We analyze bank holding companies (BHCs). BHCs file FR-Y-9C forms if they have assets above
one billion dollars. Prior to 2015 Q1, this threshold was $500 million and prior to 2006 Q1, this
threshold was $100 million. We focus on the sample period from 1990 Q1 to 2021 Q1.

We focus on top-tier bank holding companies that are headquartered in the 50 states or in Wash-
ington D.C. For book variables, we use data from the FR Y-9C, downloaded through Wharton Re-
search Data Services (WRDS). We match this to data on market capitalization and returns from the
Center for Research in Securities Prices (CRSP) using the PERMCO-RSSD links data set provided
by the New York Fed (https://www.newyorkfed.org/research/banking_research/datasets.
html). For analyses that use solely book data, we use data for those BHCs that we find in our sample
in the FR Y-9C; for analyses that use market data, we use only the observations which we observe
in both FR Y-9C and CRSP. In one robustness check, we use information on the dates of, and par-
ticipants in, bank mergers and acquistions; we obtain data on bank mergers from the Chicago Fed
(https://www.chicagofed.org/banking/financial-institution-reports/merger-data). In
an additional robustness check, we drop all banks that were ever stress-tested (CCAR and DFAST).
We obtain information on whether banks were ever stress tested from the Federal Reserve (The main
website is https://www.federalreserve.gov/supervisionreg/stress-tests-capital-planning.
htm, and the specific data sets can be found at https://www.federalreserve.gov/supervisionreg/
ccar.htm and https://www.federalreserve.gov/supervisionreg/dfa-stress-tests.htm).

When constructing aggregate time series, we drop entrants to correct for the entry of major
financial institutions such as Goldman Sachs and Morgan Stanley. Without this correction, aggre-
gate bank assets increase due to the reclassification of large actors such as Morgan Stanley and
Goldman Sachs into bank holding companies.

A.2 Motivating Facts

A.2.1 Regulatory Rules

Under Basel II (the regulatory standard in place during the crisis), bank holding companies were
subject to regulatory minimums on their total capital ratio and their tier-1 capital ratio. These
capital ratios are computed as qualifying capital/risk-weighted assets and, thus, a bank with a
higher capital ratio has lower leverage. Basel II required that banks hold a minimum tier-1 capital
ratio of 4% and a minimum total capital ratio of 8%. In order to be categorized as “well-capitalized,”
banks had to meet minimum capital ratios that were two percentage points higher (6% and 10%,
respectively). Being categorized as well-capitalized is desirable because banks that are not well-
capitalized are subject to additional regulatory scrutiny (Basel Committee on Banking Supervision,
1998; ?). After the crisis, tighter capital requirements were phased in under Basel III. The minimum
total capital ratio stayed at 8% throughout our sample period, but the tier-1 capital ratio rose
to 4.5% in 2013, 5.5% in 2014, and finally settled at 6% starting in 2015. Also under Basel
III, additional capital ratios (e.g., tier-1 leverage and common equity capital ratio) began being
monitored (however these ratios are quite similar to the preexisting tier-1 and total capital ratios)
and, starting in 2016, a “capital conservation buffer” and special requirements for systemically
important financial institutions were introduced (Basel Committee on Banking Supervision, 2011).
Kisin and Manela (2016) study whether banks violate different regulatory constraints and find that
typically banks do not violate multiple regulatory constraints.
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A.2.2 Bank Accounting Practices

The discrepancy between book and market equity reflects bank accounting practices. Banks can
delay acknowledging losses on their books (e.g. Laux and Leuz 2010), because banks are not required
to mark-to-market the majority of their assets. There are many incentives to delay book losses. In
practice, a key metric for measuring success of a bank is the book return on equity (ROE).52 Given
that ROE is a measure of success, manager compensation is linked to book value performance.
Moreover, shareholders and other stakeholders may base their valuations on information from book
data. Finally, banks are required to meet capital standards based on book values.

The flexibility of accounting their accounts is studied extensively in the accounting literature
(Bushman, 2016 and Acharya and Ryan, 2016 review the literature on this issue, Francis, Hanna
and Vincent, 1996 studies the same issue for non-financial firms). In practice, banks can record
securities on the books using two methodologies: either amortized historical cost (the security is
worth what it cost the bank to buy it with appropriate amortization) or fair value accounting.53

In addition to mis-pricing securities, another degree of freedom is the extent to which banks can
acknowledge impairments: banks have the right to delay acknowledging impairments on assets held
at historical cost, if they deem those impairments as temporary (i.e. they believe the asset will
return to its previous price). This gives banks substantial leeway, and led banks to overvalue assets
on the books during the crisis. Huizinga and Laeven (2012) find that banks used discretion to hold
real-estate related assets at values higher than their market value. (Laux and Leuz, 2010) note
some notable cases of inflated books during the crisis: Merrill Lynch sold $30.6 billion dollars of
CDOs for 22 cents on the dollar while the book value was 65 percent higher than its sale price.
Similarly, Lehman Brothers wrote down its portfolio of commercial MBS by only three percent,
even when an index of commercial MBS was falling by ten percent in the first quarter of 2008.
Laux and Leuz (2010) also document substantial underestimation of loan losses in comparison to
external estimates.

This shows up in our own analysis as well: Figure A.1 shows that provisions for loan losses and
net charge-offs only reached their peak in 2009 and 2010 respectively, and remained quite elevated
at least through 2011, well after the recession had ended. The decomposition of net charge-offs
shows that these losses were heavily driven by real estate, suggesting they were associated with the
housing crisis. Loan loss provisions lead net-charge-offs, which can be best seen for the 2008/2009
crisis and in the beginning for the Covid crisis (note we present data until 2020 Q1). Banks’ books
were only acknowledging in 2011 losses that the market had already predicted when the crisis hit.
Harris, Khan and Nissim (2013) construct an index, based on information available in the given
time period, that predicts future losses substantially better than the allowance for loan losses.54

This implies that the allowance for loan losses is not capturing all of the available information to

52For example, JP Morgan’s 2016 annual report states “the Firm will continue to establish internal ROE
targets for its business segments, against which they will be measured” (on page 83 of the report).

53Fair value accounting can be done at three levels: Level 1 accounting uses quoted prices in active markets.
Level 2 uses prices of similar assets as a benchmark to value assets that trade infrequently. Level 3 is based
on models that do not involve market prices (e.g. a discounted cash flow model). Banks are required to use
the lowest level possible for each asset. In practice, most assets are recorded at historical cost. The majority
of fair value measurements are Level 2 (Goh, Li, Ng and Ow Yong 2015; Laux and Leuz 2010). Recent work
has shown that the stock market values fair value assets less if they are measured using a higher level of
fair value accounting. This leaves room to mis-price assets on books. Particularly during 2008, Level 2 and
Level 3 measures of assets were valued substantially below one. Laux and Leuz (2010) document sizable
reclassifications from Levels 1 and 2 to Level 3 during this period. They highlight the case of Citigroup,
which moved $53 billion into Level 3 between the fourth quarter of 2007 and the first quarter of 2008 and
reclassified $60 billion in securities as held-to-maturity which enabled Citi to use historical costs.

54The allowance for loan losses (ALL) is the stock variable corresponding to the provision for loan losses
(PLL).
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Figure A.1: Decomposition of Net Charge-offs
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Notes: This figure shows aggregate net charge-offs for different categories (area chart) and aggregate loan

loss provisions (dashed black line) from 1990 Q4 to 2020 Q1. The data source are FR Y-9C reports. Net

charge-offs for loans are defined as charge-offs minus recoveries. We decompose the net charge-offs into loans

backed by real estate, commercial and industrial (C&I) loans, loans to individuals (e.g., such as credit card

loans), and all other loans (e.g. inter-bank loans, agricultural loans, and loans to foreign governments). Net

charge-offs of loans to individuals are not separately recorded until 2001 Q1, and net charge-offs of real-estate

loans are not separately recorded until 2002 Q1; these categories are thus grouped with “Other” until the

date at which they are recorded separately.

estimate losses. This may in part be strategic manipulation, but there may also be a required delay
in acknowledging loan losses. Under the “incurred loss model” that was the regulatory standard
during the crisis, banks are only allowed to provision for loan losses when a loss is “estimable and
probable” (Harris et al., 2013). Thus, even if banks know that many of their loans will eventually
suffer losses, they were not supposed to update their books until the loss was imminent.

A.2.3 Information content

There are at least two reasons to expect different information content in market and book value
measures. One reason is the delayed acknowledgment of known losses, which is a widely documented
fact in the accounting literature. As long as banks delay the recognition of losses, or refinance
non-performing loans to avoid registering losses (evergreening), book values will not reflect banks’
actual losses. If market participants can update their valuations more quickly, detecting these
losses, differences in informational content will emerge. This alone can produce differences in the
informational content of market and book equity. The other reason is that changes in the underlying
market value of loans reflect default expectations while the book value of loans does not (see filing
instructions for FR-Y-9C BHCs regulatory reports) at least until January 2020. Before 2020, loan
loss expectations were not updated in loan accounting books and loans were only written off once
the loss had occurred. Publicly traded banks were supposed to change their accounting system to
the new “current expected credit loss” (CECL) accounting system in January 2020.55 Note that
our model can capture these accounting system changes (see Section 4.3) and study their effects on
bank lending.

55See https://www.occ.treas.gov/news-issuances/bulletins/2021/bulletin-2021-20.html.
However, on March 27, 2020, the Fed moved to provide an optional extension of the regulatory capital tran-
sition for the new credit loss accounting standard, see https://www.federalreserve.gov/newsevents/

pressreleases/bcreg20200327a.htm.
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Appendix Section A.2.2Figure A.1 suggests that indeed market values contain more information
than book values of equity. Loan loss provisions, denoted as PLL in the figure, peak in early 2009
when market values had already tanked. Loan net charge-offs peaked even later in 2010 when the
economy was no longer officially in a recession.56 The decomposition of net charge-offs shows that
these losses were heavily driven by real estate, which is consistent with the nature of the crisis.
Loan loss provisions lead net-charge-offs, which can be best seen for the 2008/2009 crisis and in
the beginning for the Covid crisis (note we present data until 2020 Q1).

Figure A.2: Market equity contains more cash-flow relevant information than book equity
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Notes: This figure presents cross-sectional binned scatter plots of log outcomes on the log Tobin’s Q for

BHCs. All plots control for log book equity as a proxy for size, the Tier 1 capital ratio of each bank and

a quarter-time fixed effect. Data on market equity are from CRSP. All other data are from the FR Y-9C

reports. Return on equity over the next year is defined as book net income over the next four quarters

divided by book equity in the current quarter. The two-year ahead loan provision rate is calculated as the

ratio of eight quarter ahead quarterly loan provisions divided over total loans. The share of delinquent loans

is the ratio of 30 days or more past due loans plus loans in non-accrual over total loans. The net charge-off

rate is calculated as the difference between loan charge-offs over the next quarter and loan recoveries over

the next quarter, divided by total loans this quarter.

Next, we formally show that variation in the cross-section of Tobin’s Q reflects differences in
the information content of market and book equity values. If market equity values contain more
information about bank profitability and credit losses than book equity values, then we expect for
Tobin’s Q to predict future bank profits and loan losses even after controlling for book equity. In
Figure A.2, we show binned scatter plots of logged outcomes on the log market-to-book equity
ratio. The plots control for time fixed effects, the Tier 1 regulatory capital ratio, and log book

56When a bank has a loss that is estimable and probable, it first provisions for loan losses on the income
statement, which shows up as PLL in the figure. Later when the loss has realized, the asset is charged off
and thus taken off the books, which shows up as charge-offs. Occasionally, the bank can recover the asset
later.
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equity.57 The top left panel shows the log return on equity over the next year plotted against the
log market-to-book ratio. Banks with higher market-to-book ratios earn higher future profits. A
bank with a lower Tobin’s Q today is also more likely to have higher loan loss previsions even eight
quarters ahead (top right panel). Banks with higher market-to-book ratios also have a lower share
of delinquent loans (bottom left panel) and a lower future net charge-off rate on their loans (bottom
right). Thus, Tobin’s Q predicts future book realized profits and actual loan losses beyond what is
reflected in book values, suggesting that book values account for loan losses only very slowly. This
is consistent with the fact that book equity did not decline during the crisis, despite widespread
issues in credit markets. Note that discount rate variations affect most banks similarly and are
therefore unlikely to drive these cross-sectional results. Indeed, our results suggest that banks with
lower profitability and more delinquencies have lower Tobin’s Q, and that Tobin’s Q predicts future
loan write-downs and future profitability.

A.2.4 Book Leverage Distribution

Figure A.3 shows that the distribution of book leverage is much less dispersed relative to the market
leverage distribution. In fact, it is also relatively stable: the 90th percentile and 10th percentile of
the book leverage distribution differed only by a factor of two. This stands in stark contrast to the
market leverage distribution in Panel B of Figure 3.

Figure A.3: Quantiles of Book Leverage
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Notes: This figure shows the quantiles of book leverage for BHCs on a log scale. Book data (book equity and

liabilities) comes from the FR Y-9C. Book leverage is computed as (liabilities + book equity)/book equity.

The median value is plotted in red. Each tenth percentile is plotted in blue.

A.2.5 Impulse Response of Banks

In Figure A.4, we show the impulse response of bank holding companies to a negative net worth
shock. This figure is the same as Figure 4 in the main text, but it includes additional vari-
ables. In particular, panel D shows the impulse response of market capitalization, which drops
mechanically on impact and then modestly recovers after a net worth shock. Panel E shows
the impulse response of the common dividend rate. We define the log common dividend rate

57To control for log book equity, the left and right-hand side variables are residualized on log book equity,
and then the mean of each variable is added back to maintain the centering. It is important to control for
log book equity to prevent spurious results due to ratio bias (see Kronmal, 1993).
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as log(1 + Common Dividends/Market Capitalization). The dividend rate temporarily rises after
the shock before returning to a level close to its pre-shock level. This initial rise is driven by the
mechanical impact of falling market equity, since market capitalization is in the denominator of the
dividend rate. Thus, the response of the dividend rate implies that dividends slowly adjust down
after the shock.

Figure A.4: Estimated Impulse Responses

Panel A: Tobin’s Q Panel B: Market Leverage Panel C: Liabilities
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Panel D: Market Equity Panel E: Common Dividend Rate Panel F: Book Equity
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the estimated percent im-

pulse response to a 1% negative return shock. For example, in Panel b) we show that market capitalization decreases by

roughly 1% in response to a 1% negative return shock. Dashed lines denote the 95% confidence interval. Standard er-

rors are clustered by bank. Data on market capitalization and returns are from CRSP, and all other data are from the

FR Y-9C. The panels display the impulse responses of log Tobin’s Q (Panel A), log market leverage (Panel B), log lia-

bilities (Panel C), log market capitalization (Panel D), the logged common dividend rate (Panel E), and log book equity

(Panel F). Market leverage is defined as (Liabilities/Market Capitalization). The logged common dividend rate is defined as

log(1 + Common Dividends/Market Capitalization).

A.3 Stylized Facts: Non-Financial Firms

To compare banks to non-financial firms, we use merged data from CRSP-Compustat, excluding
firms in finance, insurance, and real estate. We recompute our main results for these non-financial
firms; the results are in Figure A.5, A.6, A.7, and A.8. In each figure, we follow the same empirical
strategy as in the main text of the paper, but apply these methods to the CRSP-Compustat data
for non-financials.

Although our paper does not offer a theory of the behavior of non-financial firms, the regulatory
enivironment implies differences in the dynamic optimization problem faced by banks vs. non-
financials. In particular, banks have strong incentives to be highly levered, which is held in check by
regulatory constraints on their book leverage. This creates the dynamic considerations emphasized
by our Q-theory.

In contrast, these issues are not relevant for most non-financials, who largely hold low leverage
and do not face such regulations. Instead, we find that some features of our Q-theory are relevant
for non-financial firms, while other features are unique to banks. In particular, the evidence suggests
that although historical-cost accounting causes book values at non-financials to lag fundamentals,
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similarly to banks, this does not interact with those firms’ leverage decision, since book leverage
regulations are not an important constraint for non-financials. Non-financials do appear to gradu-
ally delever in response to net worth shocks, but this is a feature of many dynamic trade-off theory
models. Our Q-theory combines a model of accounting with a theory of bank leverage choice; for
non-financial firms only the model of accounting is likely to be relevant.

Book values for non-financial firms are often based on historical cost, and thus will lag funda-
mental values, much like in the banking sector. Thus in Figure A.6, we find that the market-to-book
ratio is predictive of future profits, like in the banking sector (Fact 2). Moreover, our estimated
impulse responses (Figure A.8; Fact 4) for non-financial firms also find that book equity only slowly
reflects net worth shocks, which are (by construction) immediately reflected in market values.

However, non-financial firms face a very different environment when it comes to leverage: they
do not have the same incentive to lever up as banks, and are generally not constrained by regulations
on leverage. As a result, we do not see the same time series patterns of Tobin’s Q and leverage
for non-financials as we see for financial firms. Although Tobin’s Q fell during the financial crisis
for non-financial firms, the drop is smaller than the drop experienced by the banking sector, and
is small relative to other fluctuations for non-financials (Figure A.5; Fact 1). Moreover, leverage is
low for non-financials, and the distribution of leverage and Tobin’s Q is relatively stable throughout
the crisis (Figure A.7; Fact 3).

In summary, we find that some of our facts (Facts 2 and 4) are similar for financial and non-
financial firms, while others are quite different (Facts 1 and 3).

Figure A.8: Estimated Impulse Responses for Non-Financial Firms

Panel A: Tobin’s Q Panel B: Market Leverage
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Notes: These figures show the estimated percent impulse response to a 1% negative return shock, for non-financial firms. These

figures are the counterpart to Figure 4 in the body of the paper, and are constructed in the same way, but for our sample of

non-financial firms in CRSP-Compustat. The y-axis of our plots shows the contemporaneous response (−β0) as quarter 0, the

cumulative response one quarter later (−β0 − β1) as quarter 1, and so on. Dashed lines denote the 95% confidence interval.

Standard errors are clustered by firm. The panels display the impulse responses of change in log Tobin’s Q (Panel A), change

in log market leverage (Panel B), change in log book equity (Panel C), and change in log liabilities (Panel D). Market leverage

is defined as (Liabilities/Market Capitalization).
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B Details on Impulse Response Function Estimation

B.1 Risk Adjustment

In this subsection, we describe our impulse response estimation procedure in more detail, and
establish that it consistently estimates the impulse response to an idiosyncratic net worth shock.

For our main impulse response results, we wish to use risk-adjusted returns, rather than raw
returns. More formally, we assume that the market returns of bank i at time t are given by

rit︸︷︷︸
Raw Return

− rft︸︷︷︸
Risk-Free Rate

= αi + X ′
t︸︷︷︸

factors

βi︸︷︷︸
loadings

+ εit︸︷︷︸
Idiosyncratic Component

All returns are logged, e.g. rit refers to log (1 + Raw Bank Return). We wish to isolate variation
in the idiosyncratic shocks, εit, and use this variation to estimate the impulse responses.

A natural, but naive, approach would be to estimate the above model for each bank i using
OLS, and then use the estimated residuals, ε̂it, as the regressors in the impulse response estimation.
The problem here is that it induces bias: ε̂it is a noisy measure of the true regressor εit, which leads
to bias as long as T is finite (the bias will shrink as T grows large, because ε̂it will converge to the
true εit).

Fortunately, there is a simple solution: we estimate ε̂it using OLS, and then we use ε̂it as an
instrument for the unadjusted return, rit. Since our main regressions use contemporaneous returns
and twenty lags, this means we use contemporaneous ε̂it and twenty lags of ε̂it as instruments.
Instrumental variables does not suffer from the same problem of bias under classical measurement
error. Instead, to get identification under the assumed model for returns, we need our instrument to
be correlated with the “good variation”, εit, and uncorrelated with the “bad variation,” αi+X ′

tβi.
This is exactly what we get when we estimate a bank-level OLS regression of returns on factors,
in order to get ε̂it. Although our application of the risk-adjustment to this setting is novel, this
procedure (residualizing a potential shock on controls, and using the residual as an instrument) is
similar to that of Kanzig (2021), who performs a related procedure to identify oil supply shocks.

Our instrumental variables strategy will give us a consistent estimator of the true impulse
response, under the assumption that we have the correct model of returns. Since the OLS regres-
sion estimating ε̂it is conducted at the bank level, which mechanically creates correlation in the
instrument at the bank level, we cluster our standard errors at the bank level.

To summarize, our procedure consists of two steps:

1. Estimate a factor model, rit − rft = αi +X ′
tβi + εit, for each bank i, and generate estimated

idiosyncratic shocks, ε̂it.

2. Estimate the IV regression ∆ log(yi,t) = αt+
∑k

h=0 βh ·ri,t−h+ψi,t, using the estimated vector

of idiosyncratic shocks, (ε̂i,t−h)
k
h=0 as instruments for returns, (ri,t−h)

k
h=0.

Proof of Consistency for Risk Adjustment Procedure Below, we provide a formal
justification of this procedure, and provide the conditions under which it will provide us consistent
estimates as N → ∞. Note the importance of focusing on N → ∞ asymptotics, rather than also
assuming that T → ∞: if we had a large number of time periods, then the measurement error in
ε̂it would be small, and we would not need to use the IV procedure (we could just use ε̂it directly).
However, there is meaningful estimation error in ε̂it, and so the IV correction is necessary to ensure
that β̂

p→ β.
For expositional simplicity, we will focus on the univariate case (k = 0). The extension to
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include lags of εit is analagous, and is omitted for brevity. Assume the following:58

yit = αt + βεit + uit

rit = X ′
itγi + εit

We will make two key assumptions. We will assume that E [εit | X] = 0: this means that we have
correctly specified the factor model of bank returns, rit. Moreover, we will assume E [εisuit | X] =
0 ∀s, t. This assumption means that, regardless of the factor draws X, we will still have that ε and u
are orthogonal. This latter assumption is thus a slight strengthening of the typical IV orthogonality
condition.

We cannot just regress yit on rit, because Xit may be correlated with the error term, uit. We
want to isolate the effect of εit. To get an estimate of εit, we will first estimate ε̂it using an OLS
regression of rit on Xit. This yields:

ε̂it = rit −X ′
itγ̂i

= rit −X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisris

)

= rit −X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xis

(
X ′
isγi + εis

))

= εit −X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisεis

)

A naive approach would be to use ε̂it as our regressor in an OLS regression of yit on ε̂it. However,
this will in general not yield consistent estimates of β either, because ε̂it is a noisy measure of the
true εit. Instead, we will use ε̂it as an instrument for rit. That is, we will run the regression:

yit = αt + βrit + ψit

and we will use ε̂it as an instrument for the endogenous regressor rit. Of course, our structural
equation has β as the effect of εit, not rit. We can rewrite the original structural equation:

yit = αt + β
(
rit −X ′

itγi
)
+ uit

= αt + βrit + uit − βX ′
itγi︸ ︷︷ ︸

ψit

Thus, our IV regression will identify the correct β as long as our instrument, ε̂it, is uncorrelated
with the residual, ψit = uit − βX ′

itγi.
We will now show that E [ε̂it (uit − βX ′

itγi)] = 0. We have E [ε̂it (uit − βX ′
itγi)] = E [ε̂ituit − ε̂itβX

′
itγi].

58Note that here, for simplicity, we write rit, but in our implementation we use rit − rft to estimate ε̂it.

The results here will go through for rit − rft , because the time fixed effect in the main regression will absorb

rft .
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We will address each component in turn:

E [ε̂ituit] = E

εituit −X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisεis

)
uit


= E

−X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisεis

)
uit


= E

E
−X ′

it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisεis

)
uit | X


= E

−X ′
it

(
1

T

∑
s

XisX
′
is

)−1
1

T

∑
s

XisE [(εisuit) | X]


= E

−X ′
it

(
1

T

∑
s

XisX
′
is

)−1
1

T

∑
s

Xis · 0


= 0

The other component is:

E
[
−ε̂itβX ′

itγi
]
= E

X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisεis

)
βX ′

itγi


= E

E
X ′

it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xisεis

)
βX ′

itγi | X


= E

X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

XisE [(εis) | X]

)
βX ′

itγi


= E

X ′
it

(
1

T

∑
s

XisX
′
is

)−1(
1

T

∑
s

Xis · 0

)
βX ′

itγi


= 0

The sum of these components is zero, which proves that our instrument is orthogonal to the
residual. Thus, as long as the instrument is relevant (the instrument is correlated with returns),
we will consistently estimate β as N → ∞.

B.2 Inferring Impulse Responses from Coefficients

We can infer the impulse response from the coefficients of our model. In particular, the impulse
response over k quarters will be equal to

∑k
h=0 βh. To make this clear, we provide a short inductive

proof.
We define the impulse response as E [log yi,t+k | εi,t = 1]− E [log yi,t+k]. For t < 0, the impulse

response is zero, since the bank does not respond to shocks that have not happened yet (shocks are
unanticipated). For t ≥ 0, the impulse response can be backed out by induction.

11



E [log yi,t+k | εi,t = 1]− E [log yi,t+k]︸ ︷︷ ︸
Impulse Response for horizon k

= E [log yi,t+k−1 | εi,t = 1]− E [log yi,t+k−1]︸ ︷︷ ︸
Impulse Response for horizon k − 1

+ E [log yi,t+k − log yi,t+k−1 | εi,t = 1]− E [log yi,t+k − log yi,t+k−1]︸ ︷︷ ︸
Impulse response between horizons k − 1 and k

Using stationarity, we have:

E [log yi,t+k − log yi,t+k−1 | εi,t = 1]− E [log yi,t+k − log yi,t+k−1]

= E [log yi,t − log yi,t−1 | εi,t−k = 1]− E [log yi,t − log yi,t−1]

Using our regression equation, we know that this equals

k∑
h=0

βh (E [εi,t−h | εi,t−k = 1]− E [εi,t−h])

Since the shocks are mean independent, we know that all of these expectation differences are
zero, except for the one for h = k. Thus, we have:

E [log yi,t+k − log yi,t+k−1 | εi,t = 1]− E [log yi,t+k − log yi,t+k−1] = βk

Then, using induction, we find that the impulse response is
∑k

h=0 βh.
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Figure A.5: Tobin’s Q for Banks and Non-Financial Firms
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Notes: These figures show data on Tobin’s Q panel for an aggregate sample of publicly traded Bank holding

companies (left panel) and non-financial firms (right panel). The left panel repeats the figure from the body

of the paper. Tobin’s Q is the ratio of market equity to book equity and the ratio of market equity to Tier

1 equity capital (only available since 1996). Bank’s book equity is from the FR Y-9C, and market equity is

from CRSP. The right panel shows results for non-financial firms. Non-financial firm’s book equity is from

Compustat, and market equity is from CRSP.

Figure A.6: Tobin’s Q Predicts ROE for Banks and Non-Financial Firms
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Notes: These figures show cross-sectional binned scatter plots of log outcomes on the log Tobin’s Q for BHCs.

All plots control for log book equity by residualizing the variables on log book equity, and then adding back

the mean of each variable to maintain centering. The left panel shows results for banks, repeating the figure

from the body of the paper. Data on market capitalization are from CRSP, and book data are from the FR

Y-9C. The right panel shows the same figure but for non-financial firms, with book data from Compustat

and market equity from CRSP. ROE over the past year is defined as book net income over the last four

quarters divided by book equity four quarters ago; ROE over the next year is defined the one lead of this

variable (i.e. profits over the next four quarters divided by current book equity).
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Figure A.7: Quantiles of Market Leverage, Book Leverage, and Tobin’s Q for Banks and
Non-Financial Firms
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Notes: This figure shows the quantiles of market leverage (Panel A), book leverage (Panel B), and Tobin’s

Q (Panel C) on a log scale. The top row shows results for banks, repeating figures from the body of the

paper. Book data (liabilities) comes from the FR Y-9C, and market equity data is from CRSP data. The

bottom row shows the same figures but for non-financial firms, where book data comes from Compustat and

market data comes from CRSP. Market leverage is computed as (liabilities + market equity)/market equity.

Book leverage is computed as (liabilities + book equity)/book equity. Tobin’s Q is computed as market

equity/book equity. The median value is plotted in maroon. Each tenth percentile is plotted in blue.
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Figure B.1: Idiosyncratic Shock Series of Big Four Bank Holding Companies
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Notes: This figure plots the idiosyncratic shocks (for the Big Four BHCs) used to estimate the impulse

response functions. First, we isolate the idiosyncratic component of returns using the factor model, and then

we residualize this on time fixed effects.

B.3 Robustness and Validity of Identification Strategy

In this section, we conduct various tests to check the validity of our identification strategy and
robustness of our results.

A narrative approach to corroborate the idiosyncratic shocks To provide corrober-
ating evidence of the validity of our identification strategy, we first show that the estimated return
shocks do indeed look like idiosyncratic shocks for the four largest banks (Bank of America, J.P.
Morgan Chase, Wells Fargo, Citigroup). To construct the idiosyncratic shocks, we regress each
bank’s market return on the Fama-French three-factor returns and regress the residual further on
time fixed effects. The residuals from this regression represent our idiosyncratic shocks.59 Figure
B.1 presents our estimates of the idiosyncratic shocks. They indeed look like white noise and do
not seem to be substantially autocorrelated. Note that the time series for Citigroup starts a little
later because Citigroup did not exist until 1998 when Traveler’s merged with Citicorp.

We also provide narrative support for the idiosyncratic nature of our estimated shocks using an
extensive search of newspaper articles for large idiosyncratic shock value estimates.

59We are controlling for the time fixed effects, because they are included in the regression we actually run
to get the impulse response function.
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Table 2: Narrative Support for Idiosyncratic Shocks

Bank
Name

Year-Qtr idiosyncratic
shock

Bank specific events

Bank of America

2000q4 -0.200 Sunbeam (which BofA lended to) posted $86M loss. BofA said net charge-offs in Q4 will
double. BofA issues warning on $1B uncollectible debt, may miss the December quarter profit
forecast by as much as 27%.

2003q4 -0.218 BofA agrees to pay $47 to buy FIeetBoston Financial ”hefty premium” & ”could dilute earn-
ings.”

2008q3 0.288 BofA to buy Merrill for $50B (Sept 15)
2009q2 0.452 Stress test: BofA needs to address $34B capital shortfall, better than expectation.
2011q4 -0.275 Merrill Lynch has agreed to pay $315 million to end a mortgage-securities lawsuit (Dec 7)
2012q4 0.248 BofA considered better buy after increase in house prices that (given its portfolio composition)

particularly benefited BofA.

Citigroup

1999q1 0.319 Citigroup Profit Fell 53% in 4th period, but still topped analysts’ expectations
1999q3 0.205 Citigroup posts an unexpected increase of 9.3% in net income for second quarter (July 20)
1999q4 0.250 Citigroup’s citibank unit is marketing credit card for the internet to millions
2000q1 0.226 Citi Intelligent Technology Receives Investment; Dividends increase from $1.05 to $1.20
2003q4 -0.215 Citi to repay certain funds $16 mln plus interest; Citigroup Asset Management faces federal

probe.
2009q1 -0.351 Citigroup had $2B in direct gross exposure to LyondellBasell Industries, who filed for

bankruptcy protection last week. Fitch cuts Citi preferred to junk
2009q3 0.199 Citi reports profit after gain from Smith Barney. Citigroup’s mortgage mitigation rises 29% in

second quarter.
2009q4 -0.267 Citi fined in tax crackdown. Abu Dhabi’s sovereign wealth fund is demanding that Citigroup

scraps a deal that would see the fund make a heavy loss on a $7.5 billion investment in the
bank.

2010q2 0.285 Citi reported quarterly earnings of $4.4B exceeding expectations

J.P. Morgan Chase

1997q2 -0.182 J.P. Morgan particularly large exposure to 1997 Asian Financial Crisis.
https://www.imf.org/external/pubs/ft/wp/1999/wp99138.pdf

2000q1 0.169 J.P. Morgan told investors on Monday that January and February had topped performance
levels seen in the fourth quarter. Dividends increase from $0.2733 to $0.3200 on March 21.

2000q3 0.357 Chase buying J.P. Morgan.
2001q2 -0.185 J.P. Morgan Chase disclosed this week that their venture capital portfolios had incurred sig-

nificant losses.
2002q3 -0.322 JPMorgan Partners Reports $165M Operating Loss for Q2. J.P. Morgan sees third-quarter

shortfall.
2004q4 -0.198 JPMorgan Chase profit falls 13%.
2008q3 0.234 J.P. Morgan profit falls 53%, but tops Wall Street target.
2009q1 0.249 J.P. Morgan net falls sharply, but tops Wall Street view. J.P. Morgan to sell Bear Wagner to

Barclays Capital: WSJ
2012q2 -0.207 J.P. Morgan: London Whales $2 Billion Losses. Two Shareholder Suits Filed Against J.P.

Morgan

Wells Fargo

2001q2 -0.161 Wells Fargo disclosed that their venture capital portfolios had incurred significant losses. Wells
Fargo to take $1.1 billion charge

2008q3 0.338 Wells Fargo’s net dropped 21% as it set aside $3 billion for loan losses, better than expected.
Earnings declined but beat estimates.

2009q1 -0.315 Wells Fargo posted a surprise $2.55B Q1 loss, later revised to $2.77B. Wells Fargo added a
pretax $328.4M impairment of perpetual preferred securities to its fourth-quarter loss.

2009q2 0.405 Wells Fargo sees record Q1 profit, projections easily exceed expectations (expects earnings of
$3 billion).
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Table 2 shows that large absolute idiosyncratic shock values are consistent with good or bad
bank specific events, such as “Wells Fargo sees record Q1 profit, projections easily exceed ex-
pectations,“ or “Citi fined in tax crackdown.” The table shows that large positive or negative
idiosyncratic shocks can be corroborated with specific events that appear bank specific, which
supports the validity of our identification strategy.

Placebo Tests To test the validity of our identification strategy, we conduct placebo tests where
we include ten leads of returns (in addition to the contemporary value and twenty lags as before).
If the returns really are unanticipated shocks, then the leading values should not affect current
behavior. This is similar to testing for pre-trends. We are testing whether the banks that will
experience higher returns in the future are already acting differently today. Overall, the placebo
test are encouraging, and suggest that our results are not driven by prior differences in the behavior
of banks which experience return shocks.

Identification robustness We provide a few additional pieces of evidence that corroborate
the validity and robustness of our identification strategy.

First, we verify that our results are robust to excluding the crisis years 2008 and 2009 from our
sample. This rules out the notion that our results are related to specific events during the crisis
(e.g. the realization that the government might not guarantee that a bank wouldn’t fail, or that
this was somehow about exposure to Lehman). Doing this made no noticeable difference to the
results, since these years are only a small part of the sample.

We also check whether bank mergers drive the results. To this end, we drop the quarter of the
merger as well as the quarter before and after the merger. Again, this made no noticeable difference
to the results, since only a small number of observations were dropped.

Similarly, we check whether the results are driven by the stress tests performed by banks: these
stress tests were implemented after the onset of the crisis, and encouraged or mandated that banks
raise additional capital. To show that the stress tests do not drive the results, we drop all banks
that ever participated in a stress test (e.g. Bank of America participated in the stress tests, and
so we drop Bank of America from our sample in all periods). Again, this makes no noticeable
difference to the results, because only a handful of banks in the sample were ever subject to stress
tests.

Another potential concern is that the return shocks could be picking up shocks to future invest-
ment opportunities, rather than default shocks. To test this concern, we check the response of the
liquid assets ratio: if negative return shocks indeed predict lower future investment opportunities
rather than current cash flows, we would expect banks to respond to these shocks by moving their
portfolio into liquid assets. The results are in Figure B.3. Panel A shows the response of our main
measure of the liquidity ratio, which we define as (Cash + Treasury Bills) /Total Assets); within
the regression sample, the average liquidity ratio is 5.7%. We find a small, temporary response
that begins to reverse after two years. Panel B shows an alternative measure of the liquid assets
ratio, defined as (Cash + Federal Funds Sold + Securities Purchased Under Agreement to Resell +
Securities)/Total Assets; the average of this liquidity ratio is 28%. The impulse response function
has a significant but quantitatively small response: the impulse response implies that a 10% neg-
ative shock to market returns would cause the liquidity ratio to rise by just 0.2 percentage points
over the course of two years. We take this as evidence against the hypothesis that return shocks
reflect shocks to investment opportunities.

B.4 Heterogeneity

We explore heterogeneity in impulse response functions by dividing banks into two groups based
on a variable, and estimating impulse responses separately for each group. We divide banks by size
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Figure B.2: Estimated Impulse Responses for Stock Variables (Risk-Adjusted, with Placebo)
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the esti-

mated impulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence

interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on

market capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The pan-

els display the impulse responses of log liabilities, log market capitalization, log market leverage, and

log book equity. Market leverage is defined as log(Liabilities/Market Capitalization), so that it repre-

sents the difference between the response of log liabilities and log market capitalization (results using

log(Liabilities +Market Capitalization)/Market Capitalization) are extremely similar).
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Figure B.3: Estimated Impulse Responses of the Liquidity Ratio
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Notes: This figure shows the estimated impulse response function for BHCs to a 1% nega-

tive return shock. Dashed lines denote the 95% confidence interval. Standard errors are clus-

tered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization

and returns are from CRSP, and all other data are from the FR Y-9C. Panel A shows our

main measure of the liquid assets ratio, defined as log((Cash + Treasury Bills) /Total Assets).

Panel B shows results for our alternative, broader measure of the liquid assets ratio, defined as

log((Cash + Fed Funds Sold + Securities Purchased Under Agreement to Resell + Securities) /Total Assets).

(total assets), by trading assets ratio (trading assets as a share of total assets), by the risk-weighted
asset ratio (risk-weighted assets as a share of total assets), and by the mortgage ratio (real estate
loans as a share of total assets). We use the value of the variable in 2000 Q1 to sort banks into
two groups: above-median and below-median. We report the results in this section. Broadly, we
do not find strong evidence of differential responses, but we lack statistical power to rule out some
meaningful differences.

Since bank size is among the most important differences across different banks, we begin by
discussing the results for heterogeneity by size. The results are shown in Figures B.4 and B.5.
Visually, these impulse responses look remarkably similar to each other. However, the standard
errors are sufficiently large that we cannot rule out meaningful differences in the impulse responses.

We summarize the results of these impulse responses, as well as of the other potential groupings
(by trading assets ratio, risk-weighted assets ratio, and mortgage ratio) in Tables 3, 4, 5, and 6
below. For each grouping, we report the cumulative impulse response for the high and low groups
after 10 quarters and after 20 quarters, and we also report the p-value of a test of equality between
the impulse responses of the two groups. In a table of 64 tests, only one of the tests rejects the
null at the 5% level. As before, we take this to suggest that there is not strong evidence in favor of
sizable heterogeneity, but we caution that the standard errors are too large to rule out meaningful
heterogeneity.
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Figure B.4: Impulse Responses for Small Banks
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the esti-

mated impulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence

interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on

market capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The pan-

els display the impulse responses of log liabilities, log market capitalization, log market leverage, and

log book equity. Market leverage is defined as log(Liabilities/Market Capitalization), so that it repre-

sents the difference between the response of log liabilities and log market capitalization (results using

log(Liabilities +Market Capitalization)/Market Capitalization) are extremely similar).
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Figure B.5: Impulse Responses for Large Banks
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Notes: These figures show estimated impulse response functions for BHCs. The figures show the esti-

mated impulse response to a one unit negative returns shock. Dashed lines denote the 95% confidence

interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on

market capitalization and returns are from CRSP, and all other data are from the FR Y-9C. The pan-

els display the impulse responses of log liabilities, log market capitalization, log market leverage, and

log book equity. Market leverage is defined as log(Liabilities/Market Capitalization), so that it repre-

sents the difference between the response of log liabilities and log market capitalization (results using

log(Liabilities +Market Capitalization)/Market Capitalization) are extremely similar).
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Table 3: Heterogeneity in Impulse Responses: Small vs. Large Banks

Response After 10 Quarters Response After 20 Quarters
Small Large p-value on Equality Small Large p-value on Equality

Market

Equity

Pre-
Crisis

-1.13 -1.09 0.75 -1.22 -1.14 0.61

(0.08) (0.07) (0.12) (0.11)

Post-
Crisis

-0.71 -0.76 0.71 -0.58 -0.61 0.84

(0.14) (0.06) (0.14) (0.07)

Liabilities

Pre-
Crisis

-0.42 -0.33 0.39 -0.65 -0.54 0.52

(0.07) (0.07) (0.13) (0.10)

Post-
Crisis

-0.13 -0.15 0.49 -0.23 -0.25 0.67

(0.02) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.71 0.76 0.59 0.57 0.60 0.87

(0.08) (0.05) (0.11) (0.09)

Post-
Crisis

0.58 0.61 0.81 0.35 0.35 0.95

(0.13) (0.06) (0.11) (0.06)

Book

Equity

Pre-
Crisis

-0.25 -0.31 0.68 -0.29 -0.49 0.44

(0.12) (0.08) (0.23) (0.13)

Post-
Crisis

-0.78 -0.44 0.04 -0.73 -0.50 0.32

(0.15) (0.09) (0.20) (0.12)

Notes: The table compares impulse responses of small vs. large BHCs. BHCs are categorized into the small

vs. large group based on their total assets in 2000 Q1, relative to the median for all banks in the IRF sample.

The first column shows the cumulative impulse response after 10 quarters of each variable, pre-crisis and

post-crisis, to a one unit negative return shock, for small banks. The second column shows the same results,

but for large banks. Standard errors, clustered at the bank level, are in parentheses. The third column shows

the p-value of a test of equality between the impulse response for small banks vs. large banks. The fourth

through sixth columns mirror the first three columns, but examining the cumulative impulse response after

20 quarters.
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Table 4: Heterogeneity in Impulse Responses: Low vs. High Trading Asset Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.10 -1.20 0.60 -1.15 -1.32 0.54

(0.05) (0.19) (0.07) (0.28)

Post-
Crisis

-0.76 -0.57 0.11 -0.60 -0.47 0.33

(0.09) (0.08) (0.10) (0.09)

Liabilities

Pre-
Crisis

-0.36 -0.36 0.99 -0.56 -0.63 0.78

(0.05) (0.14) (0.08) (0.22)

Post-
Crisis

-0.14 -0.15 0.73 -0.24 -0.25 0.91

(0.02) (0.04) (0.03) (0.05)

Market

Leverage

Pre-
Crisis

0.74 0.84 0.35 0.59 0.70 0.50

(0.05) (0.10) (0.07) (0.14)

Post-
Crisis

0.63 0.42 0.08 0.37 0.22 0.25

(0.08) (0.09) (0.08) (0.09)

Book

Equity

Pre-
Crisis

-0.25 -0.42 0.35 -0.28 -0.75 0.17

(0.07) (0.17) (0.13) (0.32)

Post-
Crisis

-0.62 -0.45 0.39 -0.66 -0.54 0.64

(0.10) (0.16) (0.13) (0.20)

Notes: The table compares impulse responses of low vs. high trading asset ratio BHCs. BHCs are categorized

into the low vs. high group based on their trading assets as a share of total assets in 2000 Q1, relative to

the median for all banks in the IRF sample. The first column shows the cumulative impulse response after

10 quarters of each variable, pre-crisis and post-crisis, to a one unit negative return shock, for low banks.

The second column shows the same results, but for high banks. Standard errors, clustered at the bank level,

are in parentheses. The third column shows the p-value of a test of equality between the impulse response

for low vs. high banks. The fourth through sixth columns mirror the first three columns, but examining the

cumulative impulse response after 20 quarters.
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Table 5: Heterogeneity in Impulse Responses: Low vs. High Risk-Weighted Asset Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.09 -1.15 0.59 -1.10 -1.22 0.43

(0.07) (0.08) (0.11) (0.12)

Post-
Crisis

-0.72 -0.79 0.64 -0.52 -0.66 0.44

(0.12) (0.09) (0.14) (0.11)

Liabilities

Pre-
Crisis

-0.29 -0.41 0.21 -0.47 -0.66 0.20

(0.06) (0.07) (0.10) (0.11)

Post-
Crisis

-0.13 -0.17 0.17 -0.25 -0.25 0.97

(0.03) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.80 0.73 0.47 0.63 0.56 0.59

(0.07) (0.06) (0.09) (0.10)

Post-
Crisis

0.59 0.62 0.82 0.27 0.41 0.31

(0.11) (0.09) (0.11) (0.09)

Book

Equity

Pre-
Crisis

-0.19 -0.35 0.23 -0.24 -0.45 0.40

(0.10) (0.09) (0.16) (0.18)

Post-
Crisis

-0.49 -0.74 0.17 -0.51 -0.81 0.23

(0.09) (0.16) (0.11) (0.23)

Notes: The table compares impulse responses of low vs. high risk-weighted asset ratio BHCs. BHCs are

categorized into the low vs. high group based on their risk-weighted assets as a share of total assets in 2000

Q1, relative to the median for all banks in the IRF sample. The first column shows the cumulative impulse

response after 10 quarters of each variable, pre-crisis and post-crisis, to a one unit negative return shock,

for low banks. The second column shows the same results, but for high banks. Standard errors, clustered

at the bank level, are in parentheses. The third column shows the p-value of a test of equality between the

impulse response for low vs. high banks. The fourth through sixth columns mirror the first three columns,

but examining the cumulative impulse response after 20 quarters.
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Table 6: Heterogeneity in Impulse Responses: Low vs. High Mortgage Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.04 -1.21 0.17 -1.07 -1.27 0.26

(0.05) (0.11) (0.07) (0.17)

Post-
Crisis

-0.75 -0.75 0.98 -0.61 -0.56 0.79

(0.13) (0.08) (0.17) (0.09)

Liabilities

Pre-
Crisis

-0.28 -0.46 0.11 -0.45 -0.73 0.09

(0.05) (0.10) (0.08) (0.15)

Post-
Crisis

-0.17 -0.11 0.09 -0.28 -0.19 0.13

(0.02) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.76 0.75 0.92 0.62 0.54 0.55

(0.06) (0.07) (0.08) (0.11)

Post-
Crisis

0.59 0.64 0.72 0.34 0.37 0.81

(0.11) (0.09) (0.13) (0.07)

Book

Equity

Pre-
Crisis

-0.20 -0.36 0.32 -0.27 -0.42 0.63

(0.07) (0.15) (0.09) (0.30)

Post-
Crisis

-0.66 -0.56 0.57 -0.70 -0.59 0.65

(0.10) (0.14) (0.13) (0.19)

Notes: The table compares impulse responses of low vs. high mortgage ratio BHCs. BHCs are categorized

into the low vs. high group based on their real estate loans as a share of total assets in 2000 Q1, relative to

the median for all banks in the IRF sample. The first column shows the cumulative impulse response after

10 quarters of each variable, pre-crisis and post-crisis, to a one unit negative return shock, for low banks.

The second column shows the same results, but for high banks. Standard errors, clustered at the bank level,

are in parentheses. The third column shows the p-value of a test of equality between the impulse response

for low vs. high banks. The fourth through sixth columns mirror the first three columns, but examining the

cumulative impulse response after 20 quarters.
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C General Equilibrium and Derivation of Social Wel-

fare Function

In this section, we embed our Q theory of banks into a general equilibrium setting. The purpose is
to derive a welfare function in order to produce normative implications. The non-financial sector
resembles is akin to the two-sector models of He and Krishnamurthy (2013) and Brunnermeier and
Sannikov (2014). The key distinction is that we introduce for Poisson capital destruction events and
bank liquidations. We furthermore consider a single household that owns all firms in the economy.

C.1 Environment

A representative risk-neutral household holds wealth in bank stocks and firms. There is a homoge-
neous good produced with capital in two productive sectors. Capital is freely mobile across sectors.
One sector (banked firms) produces goods borrowing loans from banks to buy capital. These banked
firms operate part of the capital stock and are financed entirely through banks. Capital operated
by banked firms yield an immediate return AL. The rest of the capital stock is operated by firms
that are directly owned by households. Output in this latter sector is AD per unit of capital. Banks
are the entities encountered in the text.

Each capital unit depreciates at rate δ. In addition, the capital operated by banked firms can be
destroyed rate σε. From an aggregate perspective σε is like additional depreciation in the banked
sector. We assume that: AL−σε > AD so that considering depreciation, it is economically efficient
to allocate capital to the banked sector. Capital is fully reversible and investment transforms one
unit of goods into capital. The price of capital is, therefore, equal to one unit of goods. Loans are
fully collateralized by the capital bought by banked firms. The capital destruction shocks leads to
loan defaults as in the model.

Notation. We use script variables to denote variables aggregated across banks. For example,
W represents the equity in a given bank whereas W is the aggregate equity of all banks.

Social Costs of Bank Liquidations. To relate capital destruction to loan default events,
we assume banks do not diversify loans across banked firms. For simplicity, we assume each bank
lends to a single firm—we can generalized this to multiple firms with correlated shocks. Thus, σ
can be viewed as the arrival rate of capital destruction event that affects the customer of a bank.
Under this assumption, as in the body of the text, σ captures the intensity of a default event at
a given bank (and its firm) and ε the share of the capital that gets destroyed. When there is no
liquidation of the bank, the fraction (1− ε) is the recovery of the collateral that backs the bank
loans, which is entirely seized by the bank. Thus, ε = 1− (1− ε) is the loan recovery rate.

When banks are liquidated, the bank only recovers the fraction ψ < 1 capital that backs the
loan. Thus, total losses are:

(1− ψ (1− ε)) = ε+ (1− ψ) (1− ε) .

We assume bank liquidations are socially inefficient:

AL − σ (ε+ (1− ψ) (1− ε)) < AD.

That is, whereas economically there should only be λWε in bank wealth losses, when banks are liq-
uidated, the restructuring costs amount to (1− ψ) (1− ε)λW in additional losses. It is convenient
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to account for the wealth remaining at the bank after the default event W+J̄WW :

W + J̄W (λ)W = ψ (1− ε)λW︸ ︷︷ ︸
recovered loans

− (λ− 1)W︸ ︷︷ ︸
deposits

= (1− (1− ψ (1− ε))λ)W.

This wealth is used to form new banks. Per unit of wealth, the remaining bank wealth is, 1 −
(ε+ (1− ψ) (1− ε))λ = ψ (1− ε)λ < λ. The value of social losses are J̄W (λ) = − (ε+ (1− ψ) (1− ε))λ
per unit of wealth. The recovered assets minus liabilities, W + J̄WW, are used to form new banks,
that start with z = 0. Thus, the entry per unit of wealth loss is:

Wnew =W + J̄WW.

Notice that J̄W is the jump in societies wealth after the bank is liquidated whereas JW is the
private losses. As in the text, we think of the remaining value of the bank after liquidation, v0,
as some fixed share that the bank gets to keep after liquidations. The banker views this amount
as returned to its shareholders and does not internalize the social losses. We impose a parametric
restriction to guarantee that there is value left at the surviving banks. Thus:

v0 ≤ 1− (1− ψ (1− ε))λ, ∀λ→ v0 ≤ 1− (1− ψ (1− ε))κ.

Equilibrium Rates. We assume a competitive environment. Given the linear technologies:

rLt = AL − δ, ΠLt = 0.

The user cost of capital of unbanked firms must equal, the deposit rate:

rDt = Ad − δ.

De facto, banks face a perfectly elastic supply of deposits and demand for loans. Implicitly, this
assumes that unbanked firms are plenty and deposits are never scarce. By contrast, banks have
limited wealth.

Aggregation. We now consider the heterogeneity across banks that occurs when there is delayed
accounting. Let gt (z,W ) denote the joint distribution of z andW . Then, aggregating across banks
we obtain that total loans are:

Lt =
∫ ∞

0

∫ ∞

0
λ (z)Wgt (z,W ) dzdW,

and likewise for deposits:

Dt =

∫ ∞

0

∫ ∞

0
(λ (z)− 1)Wgt (z,W ) dzdW.

The total equity at banks is:

Wt =

∫ ∞

0

∫ ∞

0
Wgt (z,W ) dzdW.

Households hold wealth, N , in equity in non-banked firms and in the banking sector W. The
sum of their sectoral wealth adds to the total capital stock:

Kt = Wt +Nt;
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Operated capital differs from the allocation of equity. In particular, the capital stock is divided
into:

Kt = KL
t +KD

t ,

where KD
t is the capital stock operated by households directly and KL

t is the capital managed
by banked firms, financed by borrowing loans. This latter capital equals the stock of bank loans
because loans are used to finance the holdings of capital by banked firms: KL

t = Lt. Here, Lt is the
aggregation of the individual loans Lt of a banks encountered earlier. Each bank chooses Dt ≥ 0
standing for borrowed funds from non-banked firms. Thus, Dt = KL

t −Wt, which is determined by
the choice of leverage. Naturally, borrowed funds comes from firms, KD

t +Dt = Nt.
Individual bank accounting profits are:

ΠBt = rLLt − rDDt.

The profits of unbanked firms is:

ΠDt = rDDt +AD (Nt −Dt) ,

which implicitly counts deposits at banks and the remainder of operated capital. Banked-firm
profits are:

ΠLt =
(
AL − rL

)
KL
t − δKL

t .

The unbanked firms and banks payout exogenous dividend rates, c̄ and cD, respectively. Banked
firms payout all their profits as dividends: ΠL. Hence, total consumption is:

Ct = c̄Wt + cDNt +ΠLt . (22)

The change in the aggregate wealth stored in banks is:

Ẇt = ΠBt − c̄Wt − σ (ω + (1− ω) (ε+ (1− ψ) (1− ε)))︸ ︷︷ ︸
≡η

KL
t ,

where ω is the share of banks that suffer a default event and survive. Wealth in unbanked firms
evolves as:

Ṅt = ΠD − cDNt − δKD
t .

Aggregate income:

Yt = ΠB +ΠD +ΠL (23)

= ALKL
t +ADKD

t ,

which sums to aggregate production. Capital investment is done by banked firms, as we show next.
Using (22) and (23), we have that:

Yt − Ct = ALKL
t +ADKD

t − cDNt − c̄Wt −ΠLt

=
(
rLt + δ

)
KL
t +ADKD

t − cDNt − c̄Wt

=
(
rLt + δ

)
KL
t − rDDt − c̄Wt +ADKd

t + rDDt − cDNt

=

∫ ∫ ∞

0

∫ ∞

0

(
ΠBt gt (z,W )− c̄W

)
dzdW +ΠDt + δKL

t − cDNt

= Ẇt + Ẇ d
t + ηKb

t + δKL
t + δKD

t

= K̇ + (η + δ)KL
t + δKt.
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Thus, defining It as the change in capital plus total capital depreciated:

K̇ = It − (η + δ)Kb
t − δKt.

Hence, we verify the income identity, It ≡ Yt − Ct. We are now ready to introduce the welfare
function.

C.2 Social Welfare Function

To work with aggregate bank decisions, we introduce the following notation: Wt, represents ag-
gregate bank equity. Consistent with the paper, we set c̄ to be the dividend rate of a bank as in
the text. Also, to avoid confusion, define Nt ≡ Nt, to be the aggregate household net-worth held
directly at firms.

We work directly with the household’s linear benefit from consumption as the notion of social
welfare:

V (Nt,Wt) ≡ E
[∫ ∞

0
exp (−ρt) Ctdt|W0, N0

]
.

Immediate Accounting. Let’s start with the immediate accounting case, assuming that all
banks behave the same. We have that the social welfare function has an HJB representation:

ρV (N,W) ≡ cdN+c̄W+VN (N,W)
(
AD − δ − cD

)
N+VW (N,W)

(
rLλW − (λ− 1) rD − c̄W − ηλW

)
.

This HJB is additive:
V (N,W) = F (N) + P (W)

where:
ρF (N) = cdN + FN (N)

(
Ad − δ − cd

)
N

and,
ρP (W) = c̄W + PW (W)

(
rLλ− (λ− 1) rD − c̄− ηλ

)︸ ︷︷ ︸
≡µW ,

W.

In turn, this value function is linear and thus:

P (W) = pW

where p satisfies
ρp = c̄+ pµW ,

and unpacking µW ,

µW =
(
rLλ− (λ− 1) rD − c̄− σελ× I[λ≤min{Λ,Ξ}] − σ (ε+ (1− ψ) (1− ε))λ× I[λ≤min{Λ,Ξ}]

)
W.

Thus, we have the following result:

Problem 2 [Planner Optimal Leverage] Under immediate accounting, the maximization of social
welfare requires the maximization of(

rLλ− (λ− 1) rD − c̄− σελ× I[λ≤Λ] − σ (ε+ (1− ψ) (1− ε))λ× I[λ>Λ]

)
.
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Delayed Accounting. In sequential form, the objective function is:

V (Nt,Wt) ≡

F(N0)︷ ︸︸ ︷∫ ∞

0
exp (−ρt) cdNtdt+E

[∫ ∞

0

∫ ∞

0

∫ ∞

0
exp (−ρt) c̄Wtgt (z,W ) dzdWdt

]
.

We know that:

gt (z,W ) =

∫ ∞

0

∫ ∞

0
Gt (zt,Wt; z0,W0)× g0 (z0,W0) dz0dW0,

for some function Gt (zt,Wt; z0,W0) that yields a density of {zt,Wt} conditional on an initial
condition {z0,W0}. Thus, the term in the objective is written as:∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
exp (−ρt) c̄WtGt (zt,Wt; z0,W0) dztdWtdtg0 (z0,W0) dz0dW0

In turn, the term:∫ ∞

0

∫ ∞

0
WtGt (zt,Wt; z0,W0) dz0dW0 =

∫ ∞

0

∫ ∞

0
E [Wt|W0 =W, z0 = z] g0 (z0,W0) dz0dW0.

Hence, the expected value of dividends by banks can be written as:

P [{g0}] ≡
∫ ∞

0

∫ ∞

0
P (z,W ) g0 (z,W ) dzdW.

where implicitly we have defined:

P (z,W) = E
[∫ ∞

0
exp (−ρt) c̄Wtdt|W0 = W, z0 = z

]
.

Next, we work with the Feynman-Kac formula to consider bank liquidations and the formation
of new banks. In this case of jumps:

ρP (z,W ) = cW + PW (z,W )µW (z)W + Pz (z,W ) ż + σ
[
P
(
z + J̄z,W + J̄WW

)
− P (z,W )

]
.

In this case, we have that:

µW (z) ≡
(
rLλ (z)− (λ− 1) rD − c̄

)
Wt,

whereas the jump terms are:

J̄W = −σελ× Iλ(z)≤Λ(z) − σ (ε+ (1− ψ) (1− ε))λ× Iλ(z)>Λ(z)

J̄z = Jz × Iλ(z)≤Λ(z) − z × I[λ(z)>Λ(z)].

As before, we verify that P (z,W ) is scale independent. Thus:

Problem 3 [Bank Optimization Problem] Under delayed accounting, the social value of an indi-
vidual bank is given by P (z,W ) = p (z)W where:

ρp (z) = c+ p (z)µW (z) + pz (z) ż + σ
[
p
(
z + J̄z

) (
1 + J̄W

)
− p (z)

]
,

where
J̄W = −σελ× Iλ(z)≤Λ(z) − σ (ε+ (1− ψ) (1− ε))λ× Iλ(z)>Λ(z)
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and
J̄z = Jz × Iλ(z)≤Λ(z) − z × I[λ(z)>Λ(z)].
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D Additional Model Discussions

D.1 In Detail: Model Timing

Timing. To clarify the timing assumption, Figure D.1 plots an example of a sample path of Nt

and dNt and the implied behavior of book leverage λ̄t and Zt. Assume that the bank arbirtrarilly
decides to set book leverage to a constant, λ̄. The Figure depicts a hypothetical scenario of a
default event at time τ . At τ , the process Nt jumps following a path that is continuous from the
right. This reflects in the discontinuous point in dNt. The next panel depicts the path of λ̄: the
discontinuity represents the jump after the default event. In this example, λ̄+J λ̄ < Ξ, so the bank
remains solvent. Critically, this happens because the bank cannot control its book leverage, via
D, all the time. The panel next to it shows that Zt also jumps the date of the shock. However,
this variable is continuous from the left, which is why λ̄ jumps for that instant. After the shock,
the bank sells loans and transfers its losses into the stock of Zombie loans to return back to a
constant book leverage path. The bank could have been liquidated if the jump lead to some point
λ̄ + J λ̄ > Ξ, even though the violation would have been for an infinitesimal period of time. This
assumption is equivalent to the discrete time assumption that the shock occurs between periods.
It can also be obtained as a limit process, where we have adjustment costs to selling loans that are
taken to zero.

t

Nt

τ t

dNt

τ

t

λ̄t

J λ̄

Ξ

τ
t

Zt

JZ

τ

Figure D.1: Example: Timing Assumption

Notation and Definitions. We begin by presenting some definitions and deriving the laws
of motion of the state variables of the model and other variables of interest. Recall that, for level
variables, µx and Jx refer to the drift and jump components of the path of a variable x scaled by
wealth W , respectively. For financial ratios, µx and Jx refer to the drift and jump components of
the path of a variable x scaled without scaling.

Throughout the paper we use the following relationships that allow us to recover the original
state variables

{
L, L̄,D

}
from the triplet {λ, z,W}:
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L = λ ·W (24)

D = (λ− 1) ·W (25)

L̄ = λW + zW. (26)

W̄ =W + zW. (27)

We express the dividend-to-equity ratio as:

c ≡ C/W.

D.2 Variable Paths

Let τ be the time of the realization of default event. Next, we describe the paths of variables in
their canonical (integral) form.

Discontinuity Points at Default Events. We describe the behavior of each model variable
at its discontinuity point.

Loans. We have that the controlled part of loans is:

lim
t→τ−

Lt = lim
t→τ−

λtWt,

along a path where λt follows a continuous path prior to the default event.
Upon a default event, the fraction ε of loans is lost:

Lτ = lim
t→τ−

Lt − εLt.

Immediately after the jump, the bank sells loans at the amount Sτ . Therefore,

lim
t→τ+

Lt = Lτ − Sτ .

Discrete loan events occur when there are no defaults, but z reaches zo. The date τ of a loan sale
event, we also have the same equation.

Deposits. Default events do not change the bank’s liabilities. Thus,

lim
t→τ−

Dt = Dτ ,

After a default event, the bank sells loans and reduces its stock of liabilities:

lim
t→τ+

Dt = Dτ − Sτ .

Fundamental Equity. At the instant of the default event, equity and loans satisfy:

Wτ = lim
t→τ−

Wt − εLt

Fundamental equity remains unchanged with a loan sale:

lim
t→τ+

Wt =Wτ .
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This limits always satisfy Wt = Lt −Dt, ∀t.

Zombie Loans. As a result of a default event, zombie loans satisfy:

Zτ = lim
t→τ−

Zt = lim
t→τ−

ztWt,

at the instant of the default event. The banker can choose to hide losses in the amount Hτ =
ε limt→τ− λtWt. It optimally does so. Thus, zombie loans change with the hiding of losses immedi-
ately after the default event:

lim
t→τ+

Zt = Zτ +Hτ .

Fundamental Leverage. For convenience, we define:

Fτ ≡ Sτ
limt→τ− Wt

·

As a result of a default event, leverage is:

λτ = lim
t→τ−

Lt − εLt
Wt − εLt

= (1− ε) lim
t→τ−

λt
1− ελt

,

at the instant of the default event. The jump in leverage corresponds to the uncontrolled part of
leverage

λτ − lim
t→τ−

λt.

Considering the asset sales, fundamental leverage is follows:

lim
t→τ+

λt =
Lτ + Sτ
Wτ

=
Lt − εLt + Sτ
Wt − εLt

= lim
t→τ−

λt − ελt
1− ελt

+
1

limt→τ− Wt

Sτ
(1− ελt)

Thus, leverage jumps to:

lim
t→τ+

λt = lim
t→τ−

λt − ελt
1− ελt

+
Sτ

(1− ελt)
,

considering the adjustment of loans.

Zombie Ratios. At the time of a default event, the zombie ratio satisfies:

zτ = lim
t→τ−

Zt
Wt − εLt

= lim
t→τ−

zt
1− ελt

,

at the instant of the default event. The zombie ratio remains unchanged with a loan sale:

lim
t→τ+

zt = zτ + lim
t→τ−

ελt
1− ελt

.

Book Loans. At the time of a default event, book loans satisfy:

L̄τ = lim
t→τ−

L̄t + ελtWt,

reflecting that the losses can be detected at the instant of the default event. However, immediately
after the jump, the bank sells loans the amount −Sτ ,the sale is registered in the books. Thus,

lim
t→τ+

Lt = Lτ − Sτ +Hτ .
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Book Equity. Book equity jumps the instant of a default event. Thus:

W̄τ = lim
t→τ−

W̄t − ελtWt,

But it increases with the hiding of losses immediately after:

lim
t→τ+

W̄t = W̄τ +Hτ .

Book Leverage. Book leverage remains jumps the instant of a default event. Thus:

λ̄τ = lim
t→τ−

λ̄t −
ελt

1− ελt
,

but reverts back immediately after to:

lim
t→τ+

λ̄t = λ̄τ + lim
t→τ−

ελt
1− ελt

− Sτ
1− ελt

Little q. At the time of a default event, little q satisfies:

qτ = lim
t→τ−

Wt − ελtWt

W̄τ − ελtWt
.

:

lim
t→τ+

qτ = lim
t→τ−

Wt − ελtWt

W̄τ
,

reverts back with the jump in losses.

Discontinuity Points at Unforced Deleveraging Events. If at some date τ, the bank
reaches some point in the stat space {zo,W} an decides to switch its leverage position discretely,
i.e., if the optimal policy λ∗ has a discontinuity pint, the paths of variables are as above, setting
ε = 0 and

Sτ = (1− ελ)

(
lim
t→τ+

λt − lim
t→τ−

λt

)
.

D.3 From Leverage to Loan Growth Ratios

While leverage is a control variable for banks, along a continuous path of the bank’s state variables
and controls, we can also describe growth rate of loans ι. Along a continuous path, the net
investment in loans by a the bank is:

ι ≡ I/L− δ,

where δ can represent the repayment share of past loans and I a flow of new loans. The flow of
new loans and, thus, ι should be consistent with the bank’s leverage decision.

We note the relationship between the growth in loans and the state variable z, along a continuous
path for loans.

L = λW ⇒ µLW = λ̇W + λµWW ⇒ λ̇ = µL − λµW .

Replacing the values for these variables, we obtain:

λ̇ = ιλ− λµW ⇒ ι =
λ̇

λ
+ µW .

Thus, the growth rate of loans is the sum of growth of leverage plus the growth in equity.
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Consistency. Along a continuous path, if the solution to the bank’s problem is given by
some optimal leverage decision, λ∗ (z). In this case:

λ̇ = λ∗z (z) ż.

Thereby, we obtain that the growth in loans is given by:

ι =
λ∗z (z)

λ∗ (z)
ż + µW (z) .

Likewise, upon a default event:(
λ+ Jλ + J̄λ

)(
W + Jλ

)
− λW = SdNt.

D.4 Derivation of Laws of Motion from Discrete-Time Analogs

Summary Table. The following table summarizes the drift and jump terms of different variables
as functions of {λ, z,W}.

Variable Drift Jumps Sale
State Variables and Financial Ratios

W
[
rLλ− rD (λ− 1)− c

]
W −ελW 0

Z −αZ ελW 0

z −z
(
α + µW

)
ελ
(
z+1
1−ελ

)
0

λ ιλ− λµW ελ
1−ελ (λ− 1) F (z) / (1− ελ)

Deduced Variables
L ιλW −ελW F (z)
D

[
rD (λ− 1)− rLλ+ ιλ+ c

]
W 0 F (z)

L̄ (ιλ− αz)W 0 F (z)
W̄

(
rLλ− rD (λ− 1)− αz

)
W 0 0

q αz
(1+z)2

−ελq 0

λ̄ 1
1+z

(
ιλ− λµW − αz 1−λ

λ+z

)
0 F (z) /q

s −s′ (z)
(
α + µW

)
z s

(
z + ελ

(
z+1
1−ελ

) )
− s (z) 0

Table 7: Drifts and Jumps of Variables

We present some observations that derive these laws of motion and provided preliminary results
that aid the proof of the main propositions in the paper.

Preliminary Results 1: derivations of laws of motion. Here, we provide an explicit
derivation of the law of motion of bank equity, starting from a discrete time formulation. In a
discrete time formulation, with time interval ∆, the bank receives a default shock ε < 1 with
probability σ∆. Let:

Nt+∆ −Nt =

{
0 with prob 1− σ∆
1 with prob σ∆

denote a default event process. Recall that dN is a Poisson process.
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Loans. Now consider a time interval of length ∆. The law of motion for fundamental loans
satisfies:

Lt+∆ = (1− δ∆)Lt + It∆− εLt (Nt+∆ −Nt) + Ft,

with the interpretation that the first term is the non-maturing fraction of loans, the second are loan
issuances, and the third are losses in a time interval. Subtracting Lt from both sides and taking
∆ → 0, we obtain the following law of motion:

dL = (I − δL) dt− εLdN + FL.

The interpretation of dL is important. As all differentials, it is a stand in for notation. We
should interpret as a limit of a rate of change as ∆ → 0; likewise, dN as the limit Poisson event
corresponding to Nt+∆ −Nt, as ∆ → 0 and FL as the process of asset sales.60 The key is that this
differentials must represent the paths in D.2.

We express this law of motion in terms of net-worth, replacing (24), to obtain:

dL = ιλWdt− ελWdN + FL. (28)

Consistent with our notation, we define the drift and jumps relative to wealth are given by:

µL ≡ ιλ and JL ≡ −ελ.

Deposits. For deposits we have that:

Dt+∆ =
(
1 + rD∆

)
Dt −

(
rL∆+ δ∆

)
Lt + It∆+ Ct∆+ Ft

with the interpretation that the first term is the increase in deposits that results from paying interest
with deposits; the second term is the reduction in deposits by the interest and principal payments
on outstanding loans; the third term is the increase in deposits as a result of loan issuances; and
the final term is dividend payments, all paid with deposits. Taking ∆ → 0, again we obtain the
following law of motion:

dD =
[
rDD −

(
rL + δ

)
L+ I + C

]
dt+ Ft.

We express this law of motion in terms of wealth, by using (27), to obtain:

dD =
[
rD (λ− 1)− rLλ+ ιλ+ c

]
Wdt+ Ft. (29)

We define the growth rate of deposits relative to net-worth:

µD ≡ rD (λ− 1)− rLλ+ ιλ+ c and JD = 0.

60Likewise, we may wish to consider the path of loans conditional on no Poisson events, as wells as the
expected path of loans, respectively:

L̇ = (I − δL) L̇ = (I − δL)− εLσ + F.
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Fundamental Equity. Next, we present the evolution of fundamental equity:

dW = dL− dD

=
[
µL − µD

]
Wdt+ JLdN (30)

=

rLλ− rD (λ− 1)︸ ︷︷ ︸
levered returns

− c︸︷︷︸
dividend rate

Wdt− ε · λ︸︷︷︸
loss rate

WdN. (31)

where the second line uses the laws of motion in (28) and (29). The interpretation of this expression
is natural: the terms multiplying rates represent the net interest margin on the bank, which are the
banks levered return; the second term are the capital gains that are accounted immediately as the
bank creates an asset that can be worth more or less than a liability; the third term is the banks’
dividend rate; and the final term is the loss rate, which scales with leverage.

Define the drift of the growth rate of bank equity as:

µW ≡ rLλ− rD (λ− 1)− c

and denote the jump component of wealth as:

JW ≡ −ελW = JLW.

This verifies the following result.

Lemma 2 If λ is independent of W , the model satisfies growth independence.

Importantly, we note that the bank accumulates wealth over time, but does not make accounting
profits by issuing deposits.

Zombie loans. The law of motion for zombie loans satisfies:

dZ = −α∆Z − εLt (Nt+∆ −Nt)

Taking ∆ → 0, we obtain the following law of motion:

dZ = −αZdt+ εLdN = −αzWdt+ ελWdN. (32)

Thus,
µZ ≡ −αZ and JZ ≡ −ελW = JLW.

Book Loans. The law of motion for book loans satisfies:

L̄t+∆ = (1− δ∆)Lt + It∆− α∆
(
L̄t − Lt

)
− εLt (Nt+∆ −Nt) + Ft,

with the interpretation that the first term represents how book loans fall as the principal of fun-
damental loans gets repaid; the second term increases book loans by newly issued loans; the third
term decreases book loans at the speed of loan loss recognition α times the gap in the book versus
fundamental loans; and the final term is the fraction of losses recognized in books upon receiving
a default shock. Taking ∆ → 0, we obtain the following law of motion:

dL̄ = (−δL+ I) dt− α
(
L̄− L

)
dt+ Ft.
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We express this law of motion, by using (26), in terms of wealth to obtain:

dL̄ = [ιλ− αz]Wdt+ Ft. (33)

We define the growth rate of book loans and the jump relative to net-worth accordingly:

µL̄ ≡ ιλ− αz.

Book Equity. Book equity is the difference between book loans and deposits:

W̄t = L̄t −Dt.

Thus, the differential is:
dW̄t =

(
rLλ− rD (λ− 1)− c− αz

)
Wdt,

whereby
µW̄ ≡

(
rLλ− rD (λ− 1)− c− αz

)
.

Law of motion of zombie ratio. Employing the formula for the differential of a ratio we
get:

µz ≡ z

(
µZW

Z
− µWW

W

)
(34)

= z

(
−αzW
Z

− µWW

W

)
= −z

(
α+ µW

)
.

Next, we derive the two possible jumps for z.
Upon a default event, we have that:

Jz ≡ Z + εL

W − εL
− z =

z + ελ

1− ελ
− z = ελ

(
z + 1

1− ελ

)
= −JW

(
z + 1

1− ελ

)
.

Law of motion for q. Next, we produce the law of motion for leverage q. Recall that

q =
W

W̄
=

W

W + Z
=

1

1 + z
.

Thus, the continuous portion of q satisfies:

µq ≡ 1

1 + z
· −µz

1 + z
=

αz

(1 + z)2
. (35)

The jump upon an unrecognized default event is:

Jq ≡ W − εL

W − εL+ Z + εL
− q =

1− ελ

1 + z
− 1

1 + z
= −ελq = Jwq.

Leverage. Next, we derive the law of motion for leverage λ given a choice of ι and c, along
the continuous path of bank’s variables. Employing the formula for the differential of a ratio we
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get:

µλ = λ

(
µLW

L
− µWW

W

)
(36)

= λ

(
ιλW

L
− µWW

W

)
= λ

(
ι− µW

)
.

Upon a default shock, the discontinuous jump in leverage is given by:

Jλ =
L− ελW

W − ελW
− L

W
=

(
(1− ε) · λ
1− ελ

− λ

)
= ελ · λ− 1

1− ελ
.

Therefore, combining the drift and jump portions of the law of motion, we obtain:

dλ =
(
ι− µW

)
λdt− ελ · λ− 1

1− ελ
dN. (37)

The interpretation of this law of motion is that leverage increases with the issuance rate, falls as
loans mature and falls as the bank makes earns income on its current portfolio, µW . We thus have:

µλ =
(
ι− µW

)
λ,

and for the jump term, we obtain

Jλ = ελ · λ− 1

1− ελ
= −JW λ− 1

1− ελ
.

Naturally, leverage jumps with defaults, and more so the more levered the bank is.
Next, immediately after a jump in leverage, the bank sells a number of loans F .

Book Leverage. Next, we produce the law of motion for book leverage λ̄. Recall that

λ̄ =
L̄

W̄
=

L+ Z

W + Z
=
λ+ z

1 + z
.

Thus, the continuous portion of λ̄ satisfies:

µλ̄ ≡ λ̄

(
µλ

λ+ z
+ µz

(
1

λ+ z
− 1

1 + z

))
=

1

1 + z

(
µλ + µz

1− λ

λ+ z

)
. (38)

The jump upon an unrecognized default event is:

J λ̄ ≡ L− εL+ Z + εL

W − εL+ Z + εL
− λ̄ =

λ+ z

1 + z
− λ̄ = 0.
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D.5 In Detail: Solution Under Immediate Accounting

Recall Proposition 1 in the body of the text. Figure D.2 depicts the objective function Ω (λ) in
(11), as a function of λ. The figure illustrates the trade-off between levered returns and liquidation
risk. Notice that Ω (λ) displays three segments: (I) In the liquidation region (i.e., λ > κ) the bank
is immediately liquidated—the value of Ω (λ) is zero. (II) In the solvency region, leverage is lower
than the shadow-boundary leverage, (i.e., λ ∈ [1,Λ]). The bank effectively circumvents liquidation
risk, as its leverage remains below the liquidation threshold, even in the event of a default. (III) In
the liquidation-risk region (i.e., λ ∈ (Λ, κ]), the bank is liquidated once a loan default event occurs.

Panel a) shows Ω (λ) maximized at the shadow boundary, while Panel b) depicts its maximiza-
tion at the liquidation boundary. The same pattern is true with delayed accounting.

Panel (a) No Liquidation Risk

λ0

Ω

κλoΛ
λ0

Ω solvency liquidationrisk

buffer

Ω∗

Panel (b) Liquidation Risk

λ0

Ω

κλoΛ
λ0

Ω solvency liquidationrisk

buffer

Ω∗

Figure D.2: Return vs. Liquidation Risk Tradeoff
Notes: The two panels plot the value of the bank’s objective for different values of λ for the case with immediate loan loss

recognition for different values of the fundamental leverage constraint, κ—under κ < Ξ. In the left panel the bank prefers to

set leverage at the shadow boundary and not risk liquidation. In the right panel, the bank risks liquidation.

In the solvency region, both the levered return, expressed as
(
rL − rD

)
λ, and the default losses,

denoted as −σελ, are proportional to leverage. According to Assumption 1, the expected levered
return is positive, leading to an increase in the objective function within this segment. In contrast,
in the liquidation risk region, while the levered return

(
rL − rD

)
λ continues to be linearly related

to leverage, loan losses no longer influence the bank’s objective, resulting in an increased slope
of the objective function. However, the fixed expected liquidation cost, represented by σ

(
vo

v∗ − 1
)
,

is deducted from the objective function. When leverage transitions from the solvency region to
the liquidation risk region, there is a discontinuous drop in the objective, reflecting the bank’s
anticipated liquidation cost. Consequently, Ω (λ) exhibits two local maxima: one at the shadow
boundary, Λ, and another at the liquidation boundary, κ. Therefore, the leverage that maximizes
expected returns, Ω∗, is situated either at the shadow boundary or at the liquidation boundary

Ω∗ = rD +max


liquidation boundary︷ ︸︸ ︷(

rL − rD
)
κ− σ

(
1− vo

v∗

)
,

shadow boundary︷ ︸︸ ︷
Λ
((
rL − rD

)
− εσ

)
 ,
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as noted in the body of the text. Figure D.2 illustrates the two scenarios: Panel a) shows Ω (λ)
maximized at the shadow boundary, while Panel b) depicts its maximization at the liquidation
boundary. The same pattern is true with delayed accounting. Corollary 1 dictates parametric
conditions under which one case is the optimal solution.
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D.6 In Detail: Market-based Liquidations and Insolvency

Next, we explain the connection between insolvency and liquidations. The bank is solvent after a
default shock if:

(L− εL)−D ≥ 0 → (1− ε)λ− (λ− 1) ≥ 0.

Or, re-arranging:

λ ≤ 1/ε.

The bank satisfies the market-based constraint and, thus, avoids liquidation after the shock if:

λ ≤ 1

κ−1 + ε (1− κ−1)
≡ Λ < κ.

If κ→ ∞, then, the condition es equivalent to a solvency condition, λ ≤ 1/ε
We have the following relations:

• if κ→ ∞, the shadow boundary is equivalent to a solvency condition after a shock

• for finite values of κ, the bank is solvent if banks stay at the shadow boundary

• if κ is set below 1/ε, the bank may be liquidated while always being solvent

• if κ is set above 1/ε, and λ is chosen above 1/ε, the bank is insolvent after the first shock

• if κ = 1/ε, the shadow boundary is 1. In that case, the bank is always liquidated after the
first shock if it levered.
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D.7 In Detail: Epstein-Zin Preferences

In the quantitative sections, we use Duffie-Epstein preferences. Under these preferences:

Vt = Et
[∫ ∞

t
f (Cs, Vs) ds

]
,

where the f is given by:

f (C, V ) ≡ ρ

1− θ

[
C1−θ − {(1− ψ)V + ψ}

1−θ
1−ψ

{(1− ψ)V + ψ}
1−θ
1−ψ−1

]

=
ρ

1− θ
{(1− ψ)V + ψ}

[
C1−θ

{(1− ψ)V + ψ}
1−θ
1−ψ

− 1

]
.

In this representation, Vt stands for flow utility. We have some limits of interest.

CRRA Case. Consider the following limit:

lim
ψ→θ

ρ

1− θ

[
C1−θ − {(1− ψ)V + ψ}

1−θ
1−ψ

{(1− ψ)V + ψ}
1−θ
1−ψ−1

]
= ρ

C1−θ − θ

1− θ
− ρV.

Thus, the HJB equation (54) becomes:

ρV = ρ
C1−θ − θ

1− θ
+ VWµ

W + VZµ
Z + θJV .

This formulation is consistent with standard time-separable utility of the integral:

Vt = ρEt
[∫ ∞

t
exp (−ρs) C

1−θ − θ

1− θ
ds

]
,

the standard representation of utility expressed in flows.

Smoothed Dividends and Risk Neutrality Case. First, the limit as risk-aversion
vanishes:

lim
ψ→0

f (C, V ) =
ρ

1− θ
V

[
C1−θ

V 1−θ − 1

]
.

and for the derivative with respect to dividends, we obtain:

lim
ψ→0

fc (C, V ) = ρC−θV θ.

Thus, the HJB equation in this case is:

0 = f (Cs, Vs) + VWµ
W + VZµ

Z + θJV .

We use this representation in the quantitative analysis.

Baseline case. Consider the further limit:

lim
ψ,θ→0

f (C, V ) = ρC − ρV. (39)
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In the baseline case of the model we assume C = cW is given by a constant dividend policy. Then,
the (54) becomes:

ρV = ρcW + VWµ
W + VZµ

Z + θJV ,

which is a scalar transformation of the one in the main text.

45



D.8 Microfoundation: Regulatory Liquidations

In the body of the paper we argue that whereas regulators cannot directly observe the amount
of zombie loans held by banks, they could infer these through market prices. Moreover, we argue
that during the instants where banks suffer defaults, regulators have a window of opportunity to
intervene and liquidate them. Even though regulators do not observe bank accounting books in real
time, market values, which would anticipate a successful intervention, could reveal the violation of
regulatory constraints. In turn, if the intervention did not happen, banks would continue operating
and immediately hide losses, only to reveal them later. This explains why even if regulators have
the same information, they could only liquidate banks when default events make bank leverage
cross the liquidation boundary. Here, we present a sequential form game, based on ideas on the
costly-state verification model of Townsend (1979), which provides a micro-foundation for these
features of the model.

Loan Default Shock

Compliant Books Non-compliant Books

S > 0

S = 0 S > 0

S = 0

Intervention No
Intervention

Intervention No
Intervention

Intervention No
Intervention

Intervention No
Intervention

Continuation S > 0
Regulatory Cost

Continuation S > 0
No Regulatory Cost

Continuation S > 0
Regulatory Cost

Continuation S > 0
No Regulatory Cost

Liquidation S = 0
Regulatory Reward

Continuation S > 0
No Regulatory Cost

Liquidation S = 0
Regulatory Reward

Continuation S > 0
No Regulatory Cost

Figure D.3: Microfoundation for Regulatory Liquidations

The extensive form of this game is depicted in Figure D.3. Consider an instant of time t which
unfolds starting with a loan default shock, determining the bank’s condition as either maintaining
regulatory compliant books or non-compliant books, considering current losses, but not past losses
which are already hidden. The state of solvency is unknown to the regulator, but known to investors.
The initial event sets the sequences of decisions by investors and the regulator, leading to distinct
outcomes.

Following the shock, investors evaluate the bank’s equity value, reflecting rational expectations
regarding the continuation of the bank:

• S > 0: if investors assign a positive value to the bank’s equity, anticipating the regulator’s
actions and the outcome of those actions.

• S = 0: Investors consider the bank’s equity valueless, anticipating the regulators actions and
the outcome of those actions.

Then, the regulator decides to intervene, conditioning on whether the price is positive or not:
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• Intervention: the bank is intervened and, based on its books, the bank continues to operate
only if it is solvent in its books.

• No Intervention: the regulator decides against taking any action, and the bank continues to
operate regardless of its state.

The game’s outcomes and payoff depend on the state of the bank and the actions of the regulator.

• Intervention of a compliant bank: The regulator incurs a cost for intervening. Investors do
not loose anything.

• Intervention of an non compliant bank: The bank is liquidated and the regulator receives
a reward for taking timely action to mitigate further financial system risks. Investors get a
value of zero and the price jumps to zero.

• No Intervention: the regulator does not gain or lose anything. The value of the bank remains
positive.

We consider sub-game perfect equilibria of this game. The color-coded path represents one sub-
game perfect equilibrium within the context of the game. Specifically, the path depicted in blue
is a sub-game perfect equilibrium consistent with rational prices. If the bank is solvent the price
is positive, signaling that a regulatory intervention will only lead to a cost to the regulator. The
continuity of the bank guarantees that a positive price is indeed rational.

Likewise, the path colored in red is also a sub-game perfect equilibrium, delineating the optimal
course of action in the event the bank is revealed to have insolvent books by low prices. In
anticipation of a regulatory intervention, the price jumps to zero, thereby revealing to regulators
the possibility of a successful intervention.

We note that another sub-game perfect equilibrium occurs when the price is always positive,
revealing no information, and leaving the regulator oblivious. We do not consider this case, because,
as we noted, it is inconsistent with a regulatory buffer.
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E Proofs and Derivations

E.1 Proof of Lemma 1

This section derives the liquidation and shadow boundaries.

Notation. To simplify notation, let τ define the instant of a jump in Xt. We use:

Xτ− = lim
t→τ−

Xt and Xτ+ = lim
t→τ+

Xt,

and Xτ is the value of the variable at the moment of the jump.

Liquidation Boundary. The regulatory constraint is

L̄t ≤ Ξ · W̄t ⇔ λ̄t ≤ Ξ , ∀t, (40)

as we noted in the main body of the text. We express the regulatory capital requirement in terms
of the pair {λ, z}. Recall that:

λ̄ ≡ L̄

W̄
=
λW + Z

W + Z
=
λ+ z

1 + z
. (41)

Combining (41) with (40), we obtain:

λt + zt
1 + zt

≤ Ξ ⇒ λt ≤ Ξ + (Ξ− 1) zt. (42)

Next, consider the market-based constraint:

λt ≤ κ. (43)

Thus, combining (42) and (43), we obtain:

λ ≤ Γ (z) = min {κ,Ξ + (Ξ− 1) z} . (44)

Hence, the liquidation boundary can be written independent of W . The market based constraint
is tighter than the regulatory constraint whenever:

κ ≤ Ξ + (Ξ− 1) z → z ≥ κ− Ξ

Ξ− 1
.

Thus, for any

zt ≥ zℓ ≡ κ− Ξ

Ξ− 1
,

the market based constraint is tighter.

Shadow Boundary. The regulatory constraint can be expressed in terms of the capital buffer:

Xt ≡ Ξ · W̄t − L̄t .

The bank satisfies the constraint whenever:

Xt ≥ 0, ∀t.
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Let τ be be the instant of a default. Assume that the regulator could verify the fraction β of
losses on impact, i.e., it observes the losses βεLτ .

• When β = 1, we are in the main case studied in the paper. In this case, the bank can hide
losses immediately after. Zombie loans increase immediately after τ .

• When β = 0, we are in alternative case where regulators never observe losses. Zombie loans
increase immediately at τ .

The capital buffer at τ is:

Xτ = Ξ
(
W̄τ − L̄τ

)
= Ξ

(
W̄τ− + βεLτ− −

(
L̄τ− + βεLτ−

))
.

Next, we write the capital buffer at τ in terms of fundamental variables:

Xτ

Wτ
= Ξ · (1 + zτ− + βελτ−)− (λτ− + zτ− + βελτ−) →

= Ξ+ (Ξ− 1) zτ− − λτ− − (Ξ− 1)βελτ− .

The bank can guarantee solvency at τ if Xτ/Wτ ≥ 0. Hence, for any t, the bank avoids liquidation
after a shock as long as:

0 ≤ Ξ + (Ξ− 1) zτ− − (1 + (Ξ− 1)βε)λτ− .

Re-arranging, this implies that the bank remains solvent if

λτ− ≤ Ξ + (Ξ− 1) zτ−

1 + (Ξ− 1)βε
. (45)

Setting β = 1 delivers the condition in the body of the paper. Next, we derive the shadow boundary,
for β ∈ {0, 1}.

Shadow Boundary in Case β = 1. The bank satisfies the market-based constraint at τ if:

λτ− + Jλ (λτ−) = λτ−
(1− ε)

1− ελτ−
< κ.

Thus, the is survives the shock if:

λτ− ≤ κ

1− ε+ εκ
. (46)

Combining (45), for β = 1, and (46), we obtain the shadow boundary; the bank survives a default
event as long as

λ ≤ Λ (z) ≡ min

{
κ

1− ε+ εκ
,
Ξ + (Ξ− 1) z

1− ε+ Ξε

}
,

for z being the zombie ratio at the instant of a default.
In fact, the shadow boundary can be written as the pair {z, λ} satisfying:

λ+ Jλ (λ) = min {κ,Ξ + (Ξ− 1) Jz (z, λ)} .

Recall that the value of Jz (z, λ) = z 1
1−ελ and the value of λ + Jλ (λ) = λ (1−ε)

1−ελ . For values of
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κ = Ξ+ (Ξ− 1) Jz (z, λ), we have that:

λ
(1− ε)

1− ελ
= Ξ+ (Ξ− 1)

z

1− ελ
→ λ =

Ξ+ (Ξ− 1) z

1 + (Ξ− 1) ε
,

thus verifying the case where the bank avoids liquidation under the regulatory constraint with
β = 1.

Next, we compute the values of z such that the market-based liquidation boundary is smaller
than the regulatory counterpart. This value is

zs ≡ 1− ε

1− ε+ εκ
× κ− Ξ

Ξ− 1
=

1− ε

1− ε+ εκ
× zm.

and satisfies:
Ξ + (Ξ− 1) zs

1− ε+ εΞ
=

κ

1− ε+ εκ
.

Hence, we have that the shadow boundary is:

Λ (z) =


κ

1−ε+εκ if z > zs

Ξ+(Ξ−1)z
1−ε+εΞ if z ≤ zs.

We verify the continuity of the shadow boundary at zs:

Λ (zs) =
Ξ + (Ξ− 1) zs

1− ε+ Ξε
=

Ξ+ κ−Ξ
1−ε+εκ

1− ε+ Ξε
=

Ξ+ κ−Ξ−ε(κ−Ξ)
1−ε+εκ

1− ε+ Ξε
=

Ξ(εκ)+κ−εκ
1−ε+εκ

1− ε+ Ξε
=

κ

1− ε+ εκ
,

which equals the value at the portion z > zs.

Shadow Boundary in Case β = 0. Next, we solve the case when regulators are oblivious
to any information. Consider the set of values of {λ, z} that guarantee the bank’s solvency after a
default event. We show next that these set of values satisfy

λ+ Jλ (λ) ≤ min {κ, Ξ + (Ξ− 1) · (z + Jz (z, λ))} ,

guarantee solvency after the shock. Recall that the value of z + Jz (z, λ) = z+ελ
1−ελ and the value of

λ+ Jλ (λ) = λ (1−ε)
1−ελ . For values of κ ≥ Ξ + (Ξ− 1) (z + Jz (z, λ)), we have that:

λ
(1− ε)

1− ελ
≤ Ξ + (Ξ− 1)

z + ελ

1− ελ
→ λ ≤ Ξ + (Ξ− 1) z,

thus verifying the case where the bank avoids liquidation under the regulatory constraint with
β = 0. For values of κ < Ξ + (Ξ− 1) Jz (z, λ), we have that:

λ ≤ κ

1− ε+ εκ
.

This case corresponds to the market based constraint. Thus, any λ ≤ Λ (z) ≡ min
{

κ
1−ε+εκ ,Ξ + (Ξ− 1) z

}
survives a default event.

Next, we compute the values of z such that the market-based liquidation boundary is smaller
than the regulatory counterpart. That is, the values of z such that:

κ < Ξ + (Ξ− 1) (z + Jz (z,Ξ + (Ξ− 1) z)) .
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In this case, we obtain:

κ < Ξ + (Ξ− 1)
z + ε (Ξ + (Ξ− 1) z)

1− ε (Ξ + (Ξ− 1) z)
.

Define x (z) ≡ ε (Ξ + (Ξ− 1) z), thus:

κ < Ξ + (Ξ− 1)
z + x (z)

1− x (z)
→

κ <
Ξ− Ξx (z) + (Ξ− 1) z + (Ξ− 1)x (z)

1− x (z)
→

κ <
Ξ + (Ξ− 1) z − x (z)

1− x (z)
.

κ <
x (z) /ε− x (z)

1− x (z)

Re-arranging terms, we obtain:

κε

1− ε
<

x (z)

1− x (z)
→

x (z) >
κε

1− ε+ κε
.

Replacing x (z) , we obtain:

(Ξ− 1) z >
κ

1− ε+ κε
− Ξ →

z >
1

(Ξ− 1)

κ− Ξ (1− ε+ κε)

1− ε+ κε
.

Thus, for any z > zs, the market-based liquidation is tighter, where:

zs ≡ 1

Ξ− 1

κ− Ξ (1− ε+ κε)

1− ε+ κε
.

Hence, we have that the shadow boundary is:

Λ (z) =


κ

1−ε+εκ if z > zs

Ξ + (Ξ− 1) z if z ≤ zs.

We verify the continuity of the shadow boundary at zs:

Λ (zs) = Ξ + (Ξ− 1) zs =
κ

(1 + (κ− 1) ε)
=

κ

1− ε+ εκ
,

which equals the value at the portion z > zs.
Any point at the shadow boundary of the regulatory constraint, either jumps to another point

at the shadow boundary or to the market based constraint. This condition is intuitive: since the
regulator never observes a loss when β = 0, any shock that starts at the regulatory limit should
puts the bank at the regulator limit because neither book loans nor book equity change with the
shock.
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E.2 Immediate Accounting Characterization: Proof of Proposi-
tions 1 and Corollary 1

The proof of the first part of Proposition 1 follows a special case of the proof of Proposition 2
which, in turn, is further proved for general preferences on bank dividends.

Main Result. In this Appendix we prove the following result that characterizes the solution to
the bank’s problem under immediate accounting. We specialize to linear objectives and exogenous
dividends in the body of the paper:

Proposition 5 [Bank’s Problem] The bank’s value function when α→ ∞ is

0 = max
{c}

f (c, v∗)︸ ︷︷ ︸
dividend choice

+v∗ · (Ω∗ − c) (47)

where Ω∗ is the maximal expected leveraged bank return,

Ω∗ = rD + max
λ∈[1,min{Ξ,κ}]

(
rL − rD

)︸ ︷︷ ︸
levered return

λ+ σ
{
(1− ελ) I[λ≤Λ] + voI[λ>Λ] − 1

}
︸ ︷︷ ︸

leverage choice

.

Derivation of the Main Result. Under immediate accounting, vz = 0, vzµz = 0 in Proposi-
tion 2. If λ > κ, the bank is liquidated immediately and its value is vo < c̄/ρ, which is suboptimal.
Thus, the problem in Proposition 2 simplifies to:

0 = max
{c}

f (c, v∗) + v∗µW + σ
{
v∗
[
1 + JwI[λ≤Λ]

]
+ voI[λ∈(Λ,κ]] − 1

}
.

Thus, replacing µW , we can write:

0 = max
{c}

f (c, v∗) + v∗ · (Ω∗ − c)

where:

Ω∗ = rD + max
λ∈[1,κ]

(
rL − rD

)︸ ︷︷ ︸
levered return

λ+ σ

{
JI[λ≤Λ] +

(
vo

v∗
− 1

)
I[λ>Λ]

}
and

J ≡ −ελ.

Specializing to the case of constant dividends and using the limit representation in (39), the objec-
tive simplifies to:

f (c, v∗) → c̄− v∗ρ,

where c̄ is any constant rate. This corresponds to the special case in the Propositions 1. Re-
arranging terms, in the constant dividend case we obtain:

v∗ =
c̄

ρ− Ω∗ .

Proving Corollary 1. We prove the result first for κ = min {Ξ, κ} and then generalize. Since

rL − rD > σε > 0,
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the objective is piece-wise linear in λ:

• For any λ < Λ, the objective in Ω∗ increases with leverage linearly with slope rL − rD − σε.
Thus, setting λ = Λ is optimal within λ ∈ [1,Λ].

• For any, λ ∈ (Λ, κ], the objective in Ω∗ increases with leverage linearly with slope rL − rD.
Thus, setting λ = κ is optimal within λ ∈ (Λ, κ].

The objective as a negative discontinuity at λ = Λ . Thus, without loss of generality, the bank
must choose between two values λ = {Λ, κ}. Thus, we obtain:

Ω∗ = rD +max

{(
rL − rD

)
κ+ σ

(
vo

v∗
− 1

)
, Λ

((
rL − rD

)
− εσ

)}
.

Setting leverage at the liquidation boundary is optimal if:

(
rL − rD

)
κ− σ

(
1− vo

v∗

)
>

κ

1 + ε (κ− 1)

(
rL − rD − εσ

)
.

This is the condition presented in the statement of Corollary 1. Next, we solve for the values of κ
such that the condition above holds.

We express this inequality in terms of a quadratic equation. First, multiplying both sides by
the denominator in the right:

(
rL − rD

)
κ− σ

(
1− vo

v∗

)
+ ε (κ− 1)

((
rL − rD

)
κ− σ

(
1− vo

v∗

))
> κ

(
rL − rD − εσ

)
Clearing terms:

−σ
(
1− vo

v∗

)
+ ε (κ− 1)

((
rL − rD

)
κ− σ

(
1− vo

v∗

))
> −εκσ.

Reorganizing, this expression into its polynomial components, we obtain:

κ2ε
(
rL − rD

)
+ κε

(
σ
vo

v∗
−
(
rL − rD

))
− (1− ε)σ

(
1− vo

v∗

)
> 0.

Next, we solve for the critical roots:

κo =
ε
((
rL − rD

)
− σ v

o

v∗

)
±
√
ε2
(
rL − rD − σ v

o

v∗

)2
+ 4ε (rL − rD) (1− ε)σ

(
1− vo

v∗

)
2ε (rL − rD)

=
1

2

1− σ

(rL − rD)

vo

v∗
±

√(
1− σ

(rL − rD)

vo

v∗

)2

+ 4
(1− ε)

ε

σ

(rL − rD)

(
1− vo

v∗

) .

Since the discriminant is positive, because

4ε
(
rL − rD

)
(1− ε)σ

(
1− vo

v∗

)
> 0,

there are two real roots, one negative and, at most, one positive. Only positive solutions are valid
since κ > 1. The intercept is negative while the quadratic coefficient is positive. Thus, the bank
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risks liquidation if κ > κo. Hence, for any

κ > κo =
1

2

1− σ

(rL − rD)

vo

v∗
+

√(
1− σ

(rL − rD)

vo

v∗

)2

+ 4
(1− ε)

ε

σ

(rL − rD)

(
1− vo

v∗

) (48)

the bank will risk liquidation setting leverage to the shadow boundary. This yields the value of λ0
in Corollary 1. It’s value is unique.

Next, we look for the combination of parameters such that κo ≤ 1, so that the threshold is
relevant. For such set of parameters, we have that the bank risks liquidation for any level of
leverage constraints. The solution κo is less than 1 if

1 +

√(
1− σ

(rL − rD)

vo

v∗

)2

+ 4 (1− ε)
σ

ε (rL − rD)

(
1− vo

v∗

)
− σ

(rL − rD)

vo

v∗
≤ 2.

Re-arranging terms, the condition is true if:√(
1− σ

(rL − rD)

vo

v∗

)2

+ 4 (1− ε)
σ

ε (rL − rD)

(
1− vo

v∗

)
≤ 1 +

σ

(rL − rD)

vo

v∗
.

Since both sides are strictly positive, we have that:(
1− σ

(rL − rD)

vo

v∗

)2

+ 4 (1− ε)
σ

ε (rL − rD)

(
1− vo

v∗

)
≤
(
1 +

σ

(rL − rD)

vo

v∗

)2

4 (1− ε)
σ

ε (rL − rD)

(
1− vo

v∗

)
≤
(
1 +

σ

(rL − rD)

vo

v∗

)2

−
(
1− σ

(rL − rD)

vo

v∗

)2

= 4
σ

(rL − rD)

vo

v∗
.

Canceling terms, the condition becomes:

(1− ε)

(
1− vo

v∗

)
≤ ε

vo

v∗
→ ε ≥

(
1− vo

v∗

)
.

This guarantees that the threshold κo is greater than 1. Thus, λo is unique and greater than 1.
We finally generalize to the case where Ξ = min {Ξ, κ}. Note that the threshold λo is indepen-

dent of κ. The optimal leverage decision is thus:

λ = min {Ξ, κ} if min {Ξ, κ} > λo,

and

λ =
min {Ξ, κ}

1 + (min {Ξ, κ} − 1) ε
if min {Ξ, κ} ≤ λo.

E.3 Proof of Proposition 2

In this Appendix we prove the following general version of version of Proposition 2 where dividends
are endogenous. We use this solution in the quantitative section. The solution is identical for the
case of exogenous dividends. The general version of the proposition is the following.
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Proposition 6 [Bank’s Problem] Given {z}, V (Z,W ) = v (z)W, where v is the solution to the
following HJB equation:

0 = max
{c,λ}

f (c, v) + vzµ
z + vµW + σJv (49)

where Jv is the jump in the bank’s value given a default event:

Jv =

(v (z + Jv)
(
1 + JW

)
− v (z)

)︸ ︷︷ ︸
jump in wealth

·I[λ≤Λ(z)] + [vo − v]︸ ︷︷ ︸
liquiditation

·I[λ>Λ(z)]

 .

The optimal policies are given by: C (Z,W ) = c (z) ·W .
The market value satisfies S (Z,W ) ≡ s (z) ·W , where s solves:

ρIs = c (z) + szµ
z + sµW + σJs, (50)

where Js is given by:

Js =

(s (z + Jz)
(
1 + JW

)
− s
)︸ ︷︷ ︸

jump in wealth

I[λ≤Λ(z)] + [so − s]︸ ︷︷ ︸
liquidation

·I[λ>Λ(z)]


Finally, Tobin’s Q is given by:

Q (z) = s (z)× q (z, λ (z)) . (51)

We can re-arrange the terms in the objective and obtain a reformulation:

Corollary 3 [Bank’s Problem] Given {z}, V (Z,W ) = v (z) · W, where v is the solution to the
following HJB equation:

0 = max
{c}

f (c, v)− (v − vzz) c− vzαz + (v − vzz) Ω
∗ (52)

where the optimal portfolio is:

Ω∗ = rD +max
{λ}

(
rL − rD

)
λ+

Jv

v (z)− vz (z)
,

and where:

Jv ≡
(
[v (z + Jz) (1− ελ)− v (z)] · I[λ≤Λ(z)] + (vo − v (z)) · I[λ>Λ(z)]

)
W.

Further specializing to the version with constant dividends yields Proposition 1 in the body of
the text:

Proposition 7 [Bank’s Problem] Consider the problem of the bank with exogenous dividends, c.
Given {z}, V (Z,W ) = v (z) ·W, where v is the solution to the following HJB equation:

0 = c+ (v + vz)µz + (v − vzz)max
λ

(
µW +

Jv

v − vz

)
(53)

where
Jv ≡

(
[v (z + Jz) (1− ελ)− v (z)] · I[λ≤Λ(z)] + (vo − v (z)) · I[λ>Λ(z)]

)
W.
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This condition is identical to the one that appears in the body of the paper. To prove the result,
we present a formulation and then guess and verify the solution.

Formulation. Next, we prove Proposition 6. The primitive bank HJB equation, (10), is:

0 = max
{C,λ}

f (C, V (Z,W )) +
E [dV (Z,W )]

dt
. (54)

Using a standard result in stochastic calculus for Jump processes:

E [dV (Z,W )]

dt
= VZ (Z,W )µZW + VW (Z,W )µWW + σE

[
JV
]
,

where JV is given by:

JV =
[
V
(
Z + JZ ,W + JW

)
− V (Z,W )

]
Î+ (voW − V (Z,W ))

(
1− Î

)
where

Î =


1 if λ ≤ Λ (Z/W )

0 otherwise.

Conjecture. We conjecture a solution to the value function and verify that it satisfies the HJB
equation. The conjecture is:

V (Z,W ) = v (z)W, (55)

for a suitable candidate v (z). Under this conjecture, we verify that C (Z,W ) = c (z) ·W .

Factorization. We perform some useful calculations on the guess (55). In particular, we fac-
torize equity from every term in the HJB equation. Under the conjecture,

f (C, V ) = f (c (z)W, v (z)W )

=
ρ

1− θ
v (z)W

[
c (z)1−θW 1−θ

(v (z)W )1−θ
− 1

]

=
ρ

1− θ
v (z)W

[
c (z)1−θ

v (z)1−θ
− 1

]
= f (c (z) , v (z))W. (56)

The change in the value function with respect to zombie loans is:

VZ = ∂ [v (Z/W )W ] /∂Z

= vz.

The derivative of the value function with respect with respect to W is given by:

VW = ∂ [v (Z/W )W ] /∂W

= −vz
Z

W
+ v (z) . (57)

56



Next, we collect terms to construct a modified drift for the value function:

VZµ
ZW + VWµ

WW = vz (z) ·
(
−α Z

W

)
W +

(
−vz (z)

Z

W
+ v (z)

)
µWW

= −vz (z)
(
α+ µW

)
zW + v (z) · µWW

=
(
vz (z)µ

z + v (z) · µW
)
W.

Finally, under the conjectured solution, the jump in the value function after an unrecognized default
event is:

JV =

[
v

(
Z + JZ

W + JW

)(
W + JW

)
− v (z)W

]
Î+ (vo − v (z))W

[
1− Î

]
= [v (z + Jz) (1− ελ)W − v (z)W ] Î+ (vo − v (z))

[
1− Î

]
W

=
(
[v (z + Jz) (1− ελ)− v (z)] Î+ (vo − v (z))

[
1− Î

])
W,

=
(
[v (z + Jz) (1− ελ)− v (z)] Î+ (vo − v (z))

[
1− Î

])
W.

Verification. We verify that the conjecture satisfies its HJB equation. We need to combine the
pieces together. With the factorization above, (54) can be written as:

0 = max
{c,λ}

f (c, v)W . . .

+
[
vz (z) v (z)

]
×
[
µz

µW

]
·︸ ︷︷ ︸

≡µv

W . . .

+ σJVW.

where we used the fact that any choice of C can be expressed as a choice of c (z)W as there is a
one to one map from the {z,W} space to the original space—by change of coordinates. Then, we
can factor wealth from this HJB equation to express it as:

0 =

[
max
{c,λ}

f (c, v) + µv + Jv
]
·W,

and since the maximization is independent of W , this verifies the conjecture. Hence we have the
proof of Proposition 6.

Collecting terms the solution to the HJB equation:

0 = max
{c}

f (c, v)− (v − vzz) c− αvzz + (v − vzz) Ω (z) , (58)

where

Ω (z) = rD + max
λ∈[1,Γ(z)]

(
rL − rD

)
λ− σ

Jv

v − vzz
.

we verify the conjecture that the formula (55) satisfies the HJB equation (49). The factorization is
valid as long as v (z)− vz (z) z > 0. This is true since:

0 < VW = −vz (z)
Z

W

W

W
+ v (z) = v (z)− vz (z) z.

This proves Proposition 3.
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Finally, when the dividend is set to a constant rate and θ → 0, the value function specializes
to:

0 = ρc− ρv − (v − vzz) c− αvzz + (v − vzz) Ω (z) , (59)

where

Ω (z) = rD + max
λ∈[1,Γ(z)]

(
rL − rD

)
λ− σ

Jv

v − vzz
.

Since, the factor ρ is a monotone transformation of utility, this proves Proposition 3.

E.4 Proof of Corollary 2

We derive the first-order conditions of this problem. The optimal leverage is independent of divi-
dends. We thus optimize this problem on its own. The next steps show that the solution is indeed
bang-bang.

Optimal Leverage. Assume that indeed the value function v (z) is concave. Consider the
optimal leverage choice given by:

Ω (z) = rD + max
λ∈[1,Γ(z)]

Ωo (z, λ) ,

where

Ωo (z, λ) ≡ rD +
(
rL − rD

)
λ+ σ

{
[v (z + Jz) (1− ελ)]− v (z)

v (z)− vz (z) z

}
.

We now investigate the solution to the optimal λ.

Region λ < Λ (z). The derivate of the objective with respect to λ is:

∂Ωo (z, λ)

∂λ
≡
(
rL − rD

)
+

[
(1− λε) vz (z + Jz (λ, z)) Jzλ (λ, z)− εv (z + Jz (λ, z))

v (z)− vz (z) z

]
. (60)

Recall that the jump of the zombie ratio is:

Jz (λ, z) = ελ

(
z + 1

1− ελ

)
.

Therefore. the derivative of the jump with respect to λ is:

Jzλ (λ, z) = Jz (λ, z)

(
1

λ
+

ε

1− λε

)
= Jz (λ, z)

(
1

λ
· 1

1− ελ

)
and, thus,

(1− λε) vz (z + Jz (λ, z)) Jzλ (λ, z) = εvz (z + Jz (λ, z))
1

λ
Jz (λ, z) .
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Hence, substituting this last expression into (60), we obtain:

∂Ωo (z, λ)

∂λ
=

(
rL − rD

)
− σε

(
v (z + Jz (λ, z))− vz (z + Jz (λ, z)) 1

ελJ
z (λ, z)

v (z)− vz (z) z

)

=
(
rL − rD

)
− σε

v
(
z+ελ
1−ελ

)
− vz

(
z+ελ
1−ελ

)(
z+1
1−ελ

)
v (z)− vz (z) z

 .

The derivative ∂Ωo (z, λ) /∂λ is positive if:

(
rL − rD

)
σε

>

v
(
z+ελ
1−ελ

)
− vz

(
z+ελ
1−ελ

)(
z+1
1−ελ

)
v (z)− vz (z) z

 . (61)

Recall that by assumption: λ < κ < 1
ε . Thus, the term on the right of (61) satisfies:v

(
z+ελ
1−ελ

)
− vz

(
z+ελ
1−ελ

)(
z+ελ
1−ελ

)
v (z)− vz (z) z

 >

(
v (z + Jz (λ, z))− vz (z + Jz (λ, z)) (z + Jz (λ, z))

v (z)− vz (z) z

)
.

A sufficiently condition for (61) is to show that:

rL − rD

σε
≥ v (z′)− vz (z

′) z′

v (z)− vz (z) z
(62)

for any pair z′, z. We find bounds for the ratio of the right. Recall that:

v (z)− vz (z) z =
∂V (1, z)W

∂W
=
∂V (W,Z)

∂W
.

We can bound, for any z, :

∂V (W, zW )

∂W
≤ lim

Ξ→κ

∂V (W,Z ′)

∂W
=

c

ρ− (rD + κ (rL − rD − σε)− c)
. (63)

The bound follows because the marginal value of equity is higher if there is no regulation. The
second equality follows directly from Proposition 1.

Next, we bound the value from below:

∂V (W,Z ′)

∂W
≥ lim

α,Ξ,→∞

∂V (W,Z ′)

∂W
= lim

α,Ξ,→∞
v (z)− vz (z) z =

c

ρ− rD − c
. (64)

The bound follows because the marginal value of wealth is lowest when leverage is no admissible,
as happens when α,Ξ → 0. The second equality follows directly from Proposition 1.

Combining the bounds, (63) and (64),

ρ− rD − c

ρ− (rD + κ (rL − rD − σε)− c)
≥ v (z′)− vz (z

′) z′

v (z)− vz (z) z
.

Thus, a sufficient condition for (62), is to show that:

rL − rD

σε
≥ ρ− rD − c

ρ− (rD + κ (rL − rD − σε)− c)
.
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Subtracting one from both sides and cancelling terms we obtain that this solution is guaranteed as
long as:

ρ ≥
(
rD + κ

(
rL − rD

)
− c
)
.

This condition holds by assumption. Thus, if λ < Λ (z), setting λ = Λ(z) increases the bank’s
value. The bank must be at a corner.

Region λ ∈ (Λ (z) , Γ (z)). Let λ > Λ (z). The derivative of the objective is:(
rL − rD

)
> 0.

Thus, if λ > Λ (z), setting λ = Γ (z) increases the bank’s value.

Summary. Since leverage is either at λ = Γ (z) or λ = Λ(z), as shown above, the solution
must be bang-bang. That is:

Ω (z) = rD +max
{
ΩΓ (z) , ΩΛ (z)

}
,

where

ΩΓ (z) ≡
(
rL − rD

)
Γ (z) + σ

vo − v (z)

v (z)− vz (z) z

and

ΩΛ (z) ≡
(
rL − rD

)
Λ (z) + σ

v (z + Jz (Λ (z) , z)) (1− εΛ (z))− v (z)

v (z)− vz (z) z

Optimal Dividend. When dividends are chosen, we have we have that the first-order condition
for dividends is given by:

fc (c, v) = v − vzz,

we can solve this to obtain:

c = ρ1/θ

[
v

(v − vzz)
1/θ

]
. (65)

For the case of log utility, θ → 1, and we verify that c = ρ if v is constant, as in the case of
immediate accounting.

E.5 Proof of Proposition 3: Optimal Regulation with Immediate
Accounting Case

We prove the result in two steps. First, showing the solution to the first-best and then the one of
the second best.

First Best. In the first best, we directly choose λ, ignoring any regulatory liquidations, Ξ ≥ κ.
Hence, from Proposition 2, the social optimal value of λ under immediate accounting solves:

rD − c+max
λ

((
rL − rD

)
λ− σελ× I[λ≤Λ] − σ (ε+ (1− ψ) (1− ε))λ× I[λ>Λ]

)
.

By assumptions 1 and 2,(
rL − rD

)
− σε > 0 >

(
rL − rD

)
− σ (ε+ (1− ψ) (1− ε)) .
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Thus, the optimal leverage is increasing up to Λ and then decreasing.

λfb = Λ = κ (1 + ε (κ− 1))−1 .

Second Best. Recall the bank’s optimal response to regulation, equation (13):

λ∗ (Ξ, κ) = max {κ,Ξ} × I[max{κ,Ξ}>λo] . . .+max {κ,Ξ} (1 + ε (max {κ,Ξ} − 1))−1 × I[max{κ,Ξ}≤λo],

where λo is given by (12). From Proposition 2, the social optimal value of λ under immediate
accounting solves:

rd − c+max
Ξ

((
rL − rD

)
− σε× I[λ≤Λ] − σ (ε+ (1− ψ) (1− ε))× I[λ>Λ]

)
λ∗ (Ξ, κ) ,

as described in the Proposition.
We study two cases:

Case I. κ ≤ λo. If κ ≤ λo,then for any Ξ ≥ κ, we obtain:

λ∗ (Ξ, κ) = κ (1 + ε (κ− 1))−1 = λfb.

In this case, the first-best can be implemented with laissez faire regulation.

Case II. κ > λo. If κ > λo then for any Ξ ≥ κ, we obtain:

λ∗ (Ξ, κ) = κ > λfb,

and the value of the objective is:

rD − c+
((
rL − rD

)
− σ (ε+ (1− ψ) (1− ε))

)
κ.

Case II.a. Ξ ∈ (λo, κ]. If Ξ ∈ (λo, κ], then λ∗ (Ξ, κ) = Ξ > Λ = Ξ (1 + ε (Ξ− 1))−1 and the
value of the regulatory constraint is:

rD − c+max
Ξ

((
rL − rD

)
− σ (ε+ (1− ψ) (1− ε))

)
Ξ.

By Assumption 2, the objective is decreasing in Ξ. Thus, Ξ = λo in this region.

Case II.b. Ξ ∈ [0, λo]. If Ξ ∈ [0, λo], then λ∗ (Ξ, κ) = Λ = Ξ (1 + ε (Ξ− 1))−1, the value of the
regulatory constraint is:

rD − c+max
Ξ

((
rL − rD

)
− σε

)
Ξ (1 + ε (Ξ− 1))−1 .

By Assumption 2, the objective is increasing. Thus, within the range Ξ ∈ [0, κ], the local maximum
is Ξ = λo.

There is a discontinuity at λo. We must chose between setting Ξ to the right or to the left of
λo. We set it to the left:((

rL − rD
)
− σε

)
λo (1 + ε (λo − 1))−1 ≥

((
rL − rD

)
− σ (ε+ (1− ψ) (1− ε))

)
λo,

The right-hand side is negative By Assumption 2. Hence, in a second best, we have that Ξ = λo.
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Summary. We conclude that when κ > λo, regulation is needed and is second best as the
social value is:

Ωsb = rD − c+
((
rL − rD

)
− σε

)
λo (1 + ε (λo − 1))−1 < rd − c+

((
rL − rD

)
− σε

)
λo = Ωfb.

When κ ≤ λo, regulation is not necessary and Ξ = κ achieves the first best Ωfb.
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E.6 Model Version with Loan Adjustment Costs

In this section, we derive a version of the model with adjustment costs on loans,

Φ (I, L) = I +
γ

2

(
I

L
− δ

)2

L.

We can factor out L and employing the definition of ι to obtain:

Φ (I, L) =
(
ι+ δ +

γ

2
ι2
)
L

= Φ(ι, 1)L+ δL.

Thus, we can express the funding cost relative to equity as:

Φ (I, L) /W = (Φ (ι, 1) + δ)λ, (66)

which is a function independent of the bank’s size and depends on leverage and the investment
rate.

Observation 1: Derivations of Laws of Motion. Now consider a time interval of length
∆. The law of motion for fundamental loans satisfies:

Lt+∆ = (1− δ∆)Lt + It∆− εLt (Nt+∆ −Nt) ,

with the interpretation that the first term is the non-maturing fraction of loans, the second are
loan issuances, and the third are losses in a time interval. Taking ∆ → 0, we obtain the following
law of motion:

dL = (I − δL) dt− εLdN.

We express this law of motion in terms of net-worth to obtain:

dL = ιλWdt− ελWdN. (67)

To ease the notation, we define the growth rate of fundamental loans and the jump relative to
net-worth:

µL ≡ ιλ and JL ≡ −ελ.

Similarly, for deposits we have that:

Dt+∆ =
(
1 + rD∆

)
Dt −

(
rL∆+ δ∆

)
Lt +Φ(It, Lt)∆ + Ct∆

with the interpretation that the first term is the increase in deposits that results from paying interest
with deposits; the second term is the reduction in deposits by the interest and principal payments
on outstanding loans; the third term is the increase in deposits as a result of loan issuances; and
the final term is dividend payments, all paid with deposits. Taking ∆ → 0, we obtain the following
law of motion:

dD =
[
rDD −

(
rL + δ

)
L+Φ(I, L) + C

]
dt.

We express this law of motion in terms of wealth to obtain:

dD =
[
rD (λ− 1)−

(
rL + δ

)
λ+ (Φ (ι, 1) + δ)λ+ c

]
Wdt. (68)
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We define the growth rate of deposits relative to net-worth:

µD ≡ rD (λ− 1)−
(
rL + δ

)
λ+ (Φ (ι, 1) + δ)λ+ c.

The evolution of Z is identical.

Observation 2: growth independence. Next, we present the evolution of net-worth with
adjustment costs:

dW = dL− dD

=

(rL + δ
)
λ− rD (λ− 1)︸ ︷︷ ︸

levered returns

+ (ι− (Φ (ι, 1) + δ))λ︸ ︷︷ ︸
capital loss from adjustment

− c︸︷︷︸
dividend rate

Wdt

= −ελ︸︷︷︸
loss rate

WdN. (69)

where the second line uses the laws of motion in (67) and (68), and employed observation 1.

64



F Model Appendix: Parametrization

This appendix section describes our calibration and estimation procedures in Section 4 in more
detail. We use quarterly data from 1990 Q3 to 2021 Q1 to produce the target moments. Model
moments are therefore also at quarterly frequency. To produce model moment counterparts, for
each parameter draw, we simulate a panel of 10,000 banks for the same number of quarters as the
data. Each sample simulation starts from the model’s analytic stationary distribution, which we
obtain by solving the Kolmogorov-Forward equation. From each sample, we calculate the cross-
sectional average moments and construct the impulse-response functions (IRF).

F.1 Matching Facts

We estimate a more flexible version of the model presented in Section 3, by allowing for an en-
dogenous dividend rate choice and assuming Duffie-Epstein preferences (rather than linear prefer-
ences) for the banker. The banker’s risk aversion parameter is denoted as ψ and the intertemporal
elasticity of substitution as 1/θ. To keep the parametrization tractable, we calibrate

{
rL, rD,Ξ

}
independently, matching model moments to target moments in the data. Then, conditional on
these calibrated parameters, we jointly estimate

{
ρ, ρI , θ, ε, α, κ

}
using simulated method of mo-

ments together with the calibration of σ and v0. The parameter values are listed in Table 1 in
the main text. Table 8 presents both the targeted and untargeted moments in the data and the
corresponding model moment.

Calibrated parameters. The exogenous returns on loans and deposits, rL and rD, are respec-
tively set to 1.01% and 0.51%, consistent with the quarterly yield on loans (total interest income
on loans divided by total loans) and the rate banks pay on their debt (total interest expenses di-
vided by interest-bearing liabilities) in bank call reports. These values are also consistent with the
calibration in Corbae and D’Erasmo (2021). We set the capital requirement parameter Ξ to 12.5,
reflecting a Tier-1 risk-based capital ratio requirement of 8% at which a bank is considered well
capitalized.61

Model Fit and Interpretation. Table 8 compares the moments generated by the model and
those obtained from the data: our model fits most data moments well, with the exceptions of log
market returns (which in the data includes other aggregate factors), the growth rate of book equity,
and the common dividend rate. The model fits market leverage (8.596 in the data vs 8.274 in the
model), book leverage (11.361 in the data vs 11.098 in the model), the log market return (2% in
the data and 3.4% in the model), the market to book equity ratio (exact fit at 1.316), and the
net charge-off rate (0.1% in the model vs 0.1% in the data) very tightly. Note that the capital
requirement constraint limits banks’ book leverage ratio to at most 12.5. Hence, in our model
banks keep an equity buffer over the capital requirement constraint as in the data. 62 The model
overshoots the dividend rate (0.6% in the data vs 3% in the model) and undershoots the growth
rate of book equity (2% in the data vs. 0.4% in the model). In the data, banks can also repurchase
shares to return cash to their shareholders, leading to a higher dividend rate in the model.

Table 8 presents unobservable model variables, such as fundamental leverage λ and q (funda-
mental equity/accounting value of equity). Fundamental leverage is 16.5, substantially higher than
the book leverage value of 11.1. The average value for q = W/W̄ is 0.69, implying that the fun-
damental value and the accounting value of equity differ by 31 percent. In terms of loans, zombie
loans represent 3% of the total loans of banks.

61See the Federal Reserve Supervision and Regulation Report of November 2018, available here.
62In Appendix G, Figure G.1 presents the stationary distribution of fundamental leverage λ and the zombie

loan to equity ratio z together with the liquidation set. It also shows that banks keep an equity buffer over
the liquidation boundary determined by the regulatory constraint.
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Table 8: Model and Data Moments

Data Model

Log Market Returns 0.020 0.034
(0.176) (0.032)

Market leverage 8.596 8.274
(0.590) (0.823)

Book Leverage 11.361 11.098
(0.361) (0.132)

Market to Book Equity 1.316 1.316
(0.545) (0.131)

Growth Rate of Book Equity 0.020 0.004
(0.112) (0.003)

Log Common Dividend Rate 0.006 0.030
(0.006) (0.001)

Charge-Off Rate 0.001 0.001
(0.003) (0.001)

mean/(s.e.)

q 0.687
(0.144)

z 0.540
(0.438)

Zombie Loans/Total Loans 0.029
(0.014)

λ 16.544
(4.358)

c 0.061
(0.009)

dW/W 0.004
(0.071)

s 1.972
(0.283)

Notes: The data uses the full sample from 1990 Q3 to 2021 Q1. The moments from the model are generated

from a panel of 10,000 banks with the same number of quarters as in the data. The first row for each variable

shows the mean. The second row shows the standard error of the mean in parenthesis. For market leverage,

book leverage and market-to-book equity, the mean and standard error are computed on the logs, but when

reporting the mean we apply exponential to show the mean in levels. All rates are quarterly.
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G Model Appendix: Numerical Solution

We solve the model using the finite-differences method with an upwind scheme for the choice of
forward or backward differences. Specifically, we compute the numerical derivatives of the value
function v(z) using finite differences and use the first order conditions to solve for c, and iterate on
the HJB equation. A detailed description of this algorithm can be found in Achdou et al. (2020).

Our model is simple to solve because prices are constant, but presents two complications:

1. The size of the jump depends on the endogenous state variable. Starting from a point z,
upon receiving a Poisson shock, the bank jumps to z+Jz. We use linear interpolation to get
the value function off the grid, and to build the

2. The bank must choose which boundary to operate on. Rather than using a linear complemen-
tarity problem solver, we instead follow the relaxation approach of Cioffi (2021). We assume
that the choice of λ is taken infrequently: the bank can only switch from one boundary to
the other upon arrival of an exogenous Poisson process with arrival rate P. We take P to be
large enough so that none of the results are affected by this approximation. In the limit, as
P → ∞, the value function that we get converges to the desired one.

Let b ∈ {S,L} denote the choice of the bank to operate in the shadow (S) or liquidation (L)
boundary, so that:

b =

{
S if λ = Λ(z)

L if λ = Γ (z)

The HJB of the bank is:

0 =max
c
f (c, v (z, S)) + µz (z,Λ (z)) vz (z, S) + µW (Λ (z)) v (z, S)

+ σJv (z, S) + Pmax {v (z, L)− v (z, S) , 0}

0 =max
c
f (c, v (z, L)) + µz (z,Γ (z)) vz (z, L) + µW (Γ (z)) v (z, L)

+ σJv (z, L) + Pmax {v (z, S)− v (z, L) , 0}

where:

Jv (z, b) ≡

{
v (z + Jz, S) (1− εΛ (z))− v (z, S) if b = S

vo − v (z, L) if b = L

Note that the value function v (z, b) shows up non-linearly in the terms f (c, v (z, b))—due to
the assumption of Duffie-Esptein preferences—and in max {v (z, L)− v (z, S) , 0}. For these two
terms we use the value function of the previous iteration. This circumvents the problem of having
to solve for the value function non-linearly at every iteration, at the cost of having to choose a
smaller time step when updating the value function—because the method used is semi-implicit.

The first order condition used for solving for the optimal policy c (z) is:

fc (c, v (z, b)) + zvz (z, b)− v (z, b) = 0

where fc (c, v) = β(v/c)θ.

G.1 Model Stationary distribution.

To compute the stationary distribution, we use the Kolmogorov Forward equation. Let g (z, b) be
the invariant distribution over z conditional on choice of boundary b. Let Pb→b′ = P · I[v(z,b′)>v(z,b)]
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We have:

• in the shadow boundary:

ġ (z, S) = − ∂

∂z
[µz (z, S) g (z, S)]

−σg (z, S) + σ

∫ ∞

0
g
(
z′, S

)
I[z′+Jz(z′,S)=z]dz′

−PS→L · g (z, S) + PL→S · g (z, L)

for z > 0. The first line represents changes in the density due to z drifting. The second
line subtracts mass due to banks that had zombie loan ratio z and received a loan default
shock, and adds mass from banks that after receiving a loan default shock have their zombie
loan ratio jump to z. The third line computes changes in the density due to banks shifting
boundaries. For z = 0:

ġ (0, S) = − ∂

∂z
[µz (0, S) g (0, S)]

−σg (0, S) + σ

∫ ∞

0
g (z, L) dz

−PS→L · g (0, S) + PL→S · g (0, L)

which is different in the second line: we no longer have banks jumping to z after receiving a
loan default shock (because Jz > 0), but we add to the density to replace banks that were
liquidated, to keep the mass of banks constant.

• in the liquidation boundary:

ġ (z, L) = − ∂

∂z
[µz (z, L) g (z, L)]

−σg (z, L)
+PS→L · g (z, L)− PL→S · g (z, L)

for z > 0. The first line represents changes in the density due to z drifting. The second line
subtracts mass due to banks that had zombie loan ratio z and received a loan default shock. The
third line computes changes in the density due to banks shifting boundaries.

The distribution of the state variable z and fundamental leverage λ is reported in Figure G.1.
The grey area of the figure represents the liquidation region. The largest portion of the distribution
lies in the shadow boundary.

G.2 Market returns.

Let S (z) be the valuation of a risk-neutral investor of the equity of a bank, which we use to
construct market returns. It satisfies the following HJB equation:

ρIS (z,W ) =c (z)W + SZ (Z,W )µZW + SW (Z,W )µWW + σ
[
S
(
Z + JZ ,W + JW

)
− S (Z,W )

]
where S (z) = 0 if z > Γ (z). Just like V (Z,W ), S (Z,W ) is homogeneous in W and we can
therefore express it as S (Z,W ) = s (z)W , with s (z) satisfying:

ρIs (z) = c (z) + sz (z)µ
z + s (z)µW + σ [s (z + Jz) (1− ελ (z))− s (z)]

where s (z) = 0 if z > Γ (z).
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Figure G.1: Model Stationary Distribution of Banks Across the z and λ State Space

Notes: This figure presents a two dimensional plot of the stationary distribution of banks across the (λ, z). The black dashed

line traces out the shadow boundary Λ (z) and the solid black line the liquidation boundary Γ (z). The blue and red lines are

the density of banks conditional on choosing the shadow and liquidation boundaries, respectively. The density conditional on

choosing the liquidation boundary has been multiplied by 20 for visualization purposes, as it is otherwise not visible.

Using s (z), we can construct market returns rt (z) as:

rt (z) ≡
∫ t
t−1 cτ (z)Wτdτ + st (z)Wt

st−1 (z)Wt−1
(70)

where t indexes quarters.

G.3 Formulas used to compute moments.

We list here formulas that we derived to compute moments from the model.
At the bank level, we compute the bank failure rate as σ

∫∞
0 g (z, L) dz; book loans as (λ+ z)W ;

the chargeoff rate as α (1− λ/ (z + λ)); Tobin’s Q as s/ (1 + z); market equity as sW ; liabilities
as (λ− 1)W ; market leverage as (λ− 1) /s; book loans over book equity as (λ+ z) / (1 + z); and
distance to default as 1

0.06
s+λ−1
λ−1 , where 0.06 stands for the volatility of market equity, which is

common across banks.
At the aggregate level, the mean growth rate of equity is

∫∞
0

[
µW (Λ (z))− σεΛ (z)

]
g (z, S) dz+∫∞

0

[
µW (Γ (z))− σ

]
g (z, L) dz. Note that, upon receiving a loan default shock, banks in the shadow

boundary lose a fraction εΛ (z) of their equity and banks in the liquidation boundary lose 100% of
their equity.
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To aggregate variables to a quarterly frequency, we set time steps dt = 1/30 and for every 30
time steps we use the last value for stocks and the mean for flows.

G.3.1 Aggregate Loans

To compute the law of motion of loans L note that, in the shadow boundary, the drift of leverage
is:

λ =


Ξ+(Ξ−1)z
1+(Ξ−1)ε if z ≤ zs

κ
1+(κ−1)ε if z > zs

⇒ µλShd (z) =


(Ξ−1)

1+(Ξ−1)εµ
z (z, S) if z ≤ zs

0 if z > zs

and the jump in loans is:

JL = λ′W ′ − L = Λ(z + Jz) (W − εL)− L⇒ JL

L
=

Λ(z + Jz)

λ
(1− ελ)− 1

With these two terms, we can compute the expected loan growth rate of a bank in the shadow
boundary as:

1

dt
E

[
dL

L

]
=
µλShd (z)

λ
+ µW (Λ (z)) + σ

JL

L

Likewise, for a bank in the liquidation boundary:

λ =


Ξ + (Ξ− 1) z if z ≤ zm

κ if z > zm
⇒ µλLiq (z) =


(Ξ− 1)µz (z, L) if z ≤ zm

0 if z > zm

JL = 0− L⇒ JL

L
= −1

dL

L
=

(
µλLiq (z)

λ
+ µW (Γ (z))

)
dt− 1dN

and hence:
1

dt
E

[
dL

L

]
=
µλLiq (z)

λ
+ µW (Γ (z))− σ

We then compute the mean growth rate of loans as:∫ ∞

0

[
µλShd (z)

λ
+ µW (Λ (z)) + σ

JL

L

]
g (z, S) dz +

∫ ∞

0

[
µλLiq (z)

λ
+ µW (Γ (z))− σ

]
g (z, L) dz.

G.4 The Role of the IES for the Quantitative Fit.

In Section 4.2 of the main text, we argue that the delayed loan loss recognition mechanism is
driving the slow adjustment of banks to net-worth shocks. Since the bankers’ preference imply
an intertemporal smoothing incentive whenever θ > 0, one might worry that instead what drives
the slow adjustment is θ. We investigate the role of the IES (1/θ) for the quantitative results by
solving the model for the same parameter configuration as in the baseline model (see Section 4),
except setting θ = 2, and reestimate the IRF on the model generated data. This calibration implies
significantly lower intertemporal smoothing incentives. The results are in Figure G.2.

The blue line presents the impulse response functions of the model for the case when θ = 2.
Relative to Figure 10, the IRF still shows substantially slow adjustment to a negative net-worth
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shock.

Figure G.2: Data IRFs versus Model IRFs with θ = 2
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c) Market Equity d) Liabilities
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Notes: The figures present the impulse response functions of model simulated data (blue) for the benchmark calibration, except

with the IES 1/θ increased to 1/2, and compares it to the data (gray line represents the point estimates and the shaded area

the 95% confidence interval). We show the impulse response function of Tobin’s Q (Panel a), market leverage (Panel b), market

equity (Panel c), and liabilities (Panel d).

The higher IES makes liabilities adjust faster in response to a loan default shock, so the fit of
the IRF for liabilites relative to the data worsens, and the one for market leverage improves, but
the delayed adjustment feature remains.
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