1 CES Operators

1.1 The Aggregator

- The CES operator, otherwise called Armington aggregator is defined:

$$
\begin{aligned}
V(W)= & \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)^{\frac{1}{1-\theta}} \\
& \text { subject to: } \\
< & p_{i} x_{i}>=W
\end{aligned}
$$

- θ is the inverse elasticity of substitution.
- Furthermore, $\sum \alpha_{i}=1$, without loss of generality.
- We now find the solution and back out the wealth and substitution effects.
- First observation.
- Any solution to $V(W)$ is linear in W. The reason is that:

$$
x_{i}=w_{i} W
$$

for some weight. By change of variables:

$$
\begin{aligned}
V(W) & =\left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)^{\frac{1}{1-\theta}} \\
& =W\left(\sum_{i=1}^{N} \alpha_{i}^{\theta} w_{i}^{1-\theta}\right)^{\frac{1}{1-\theta}}
\end{aligned}
$$

- We have the following FOC:

$$
x_{i}: \frac{1}{1-\theta} V(W)^{\theta}(1-\theta) \frac{\alpha_{i}^{\theta}}{x_{i}^{\theta}}=\lambda p_{i}
$$

Let's multiply by x_{i} to obtain:

$$
\frac{V(W)^{\theta}}{\lambda} \frac{\alpha_{i}^{\theta}}{x_{i}^{\theta}} x_{i}=x_{i} p_{i}
$$

Summing up on all i, we obtain:

$$
\sum_{i} \frac{V(W)^{\theta}}{\lambda} \frac{\alpha_{i}^{\theta}}{x_{i}^{\theta}} x_{i}=\sum_{i} x_{i} p_{i}=W
$$

Thus, we have that:

$$
\begin{aligned}
\frac{V(W)^{\theta}}{W} \sum_{i} \frac{\alpha_{i}^{\theta}}{x_{i}^{\theta}} x_{i} & =\lambda \rightarrow \\
\lambda & =\frac{V(W)^{\theta}}{W} V(W)^{1-\theta}=\frac{V(W)}{W}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
W \frac{\alpha_{i}^{\theta} x_{i}^{1-\theta}}{\sum_{j} \frac{\alpha_{j}^{\theta}}{x_{j}^{\theta}} x_{j}} & =x_{i} p_{i} \\
x_{i}^{\theta} & =\frac{W}{p_{i}} \frac{\alpha_{i}^{\theta}}{\sum_{j} \frac{\alpha_{j}^{\theta}}{x_{j}^{\theta}} x_{j}} \\
x_{i} & =\alpha_{i}\left(\frac{W}{p_{i}} \frac{1}{\sum_{j} \frac{\alpha_{j}^{\theta}}{x_{j}^{\theta}} x_{j}}\right)^{\frac{1}{\theta}} \\
& =\alpha_{i}\left(\frac{W}{p_{i}} \frac{1}{V(W)^{1-\theta}}\right)^{\frac{1}{\theta}} \\
x_{i} & =\alpha_{i}\left(\frac{W}{p_{i}}\right)^{\frac{1}{\theta}} V(W)^{1-\frac{1}{\theta}} .
\end{aligned}
$$

Back in objective:

$$
x_{i}^{1-\theta}=\alpha_{i}^{1-\theta}\left(\frac{W}{p_{i}}\right)^{\frac{1-\theta}{\theta}}\left[V(W)^{1-\frac{1}{\theta}}\right]^{1-\theta}
$$

Multiplying by: α_{i} we obtain:

$$
\alpha_{i}^{\theta} x_{i}^{1-\theta}=\alpha_{i}\left(\frac{W}{p_{i}}\right)^{\frac{1-\theta}{\theta}}\left[V(W)^{1-\frac{1}{\theta}}\right]^{1-\theta}
$$

Thus,

$$
\sum_{i} \alpha_{i}^{\theta} x_{i}^{1-\theta}=\sum_{i} \alpha_{i}^{\theta} x_{i}^{1-\theta}=\left[V(W)^{1-\frac{1}{\theta}}\right]^{1-\theta} \sum_{i} \alpha_{i}\left(\frac{W}{p_{i}}\right)^{\frac{1-\theta}{\theta}}
$$

Thus,

$$
\begin{aligned}
V(W) & =\left[V(W)^{1-\frac{1}{\theta}}\right]\left(\sum_{i} \alpha_{i}\left(\frac{W}{p_{i}}\right)^{\frac{1-\theta}{\theta}}\right)^{\frac{1}{1-\theta}} \\
V(W) & =\left(\sum_{i} \alpha_{i}\left(\frac{1}{p_{i}}\right)^{\frac{1-\theta}{\theta}}\right)^{\frac{\theta}{1-\theta}} W
\end{aligned}
$$

The term

$$
p^{*}=\left(\sum_{i} \alpha_{i}\left(p_{i}\right)^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}
$$

is called the ideal price index.

- Also, call

$$
\begin{aligned}
C^{*} & =V(W) \\
P^{*} C^{*} & =W
\end{aligned}
$$

- Thus,

$$
V(W)=\left(p^{*}\right)^{-1} W
$$

What is then x_{i} ? From FOC:

$$
\begin{aligned}
x_{i} & =\alpha_{i}\left(\frac{W}{p_{i}}\right)^{\frac{1}{\theta}} V(W)^{1-\frac{1}{\theta}} \\
& =\frac{\alpha_{i}}{p_{i}^{1 / \theta}}\left(p^{*}\right)^{\frac{1-\theta}{\theta}} W \\
& =\frac{\alpha_{i}}{p_{i}^{1 / \theta}}\left(p^{*}\right)^{\frac{1}{\theta}} W\left(p^{*}\right)^{-1} .
\end{aligned}
$$

Thus we obtain the following relationship:

$$
\frac{x_{i}}{C^{*}}=\frac{\alpha_{i}}{p_{i}^{1 / \theta}}\left(p^{*}\right)^{\frac{1}{\theta}}
$$

Let $\mathrm{c}_{i}=x_{i}$ to obtain:

$$
\frac{c_{i}}{C^{*}}=\alpha_{i}\left(\frac{p^{*}}{p_{i}}\right)^{\frac{1}{\theta}}
$$

1.2 Elasticitities

- Since there are N commodities. We are interested in the direct elasticities and the cross-elasticities across goods:

$$
\in_{i}^{i}=\frac{\partial c_{i}}{\partial p_{i}} \frac{p_{i}}{c_{i}} \text { and } \in_{j}^{i}=\frac{\partial c_{i}}{\partial p_{j}} \frac{p_{j}}{c_{i}}
$$

- Also, there are the Hicksian elasticities obtained when the agent is compensated with more wealth:

$$
\bar{\epsilon}_{i}^{i}=\frac{\partial c_{i}}{\partial p_{i}} \frac{p_{i}}{c_{i}} \text { and } \bar{\epsilon}_{j}^{i}=\frac{\partial c_{i}}{\partial p_{j}} \frac{p_{j}}{c_{i}}
$$

where the formula for c changes to account for for the change in p .

- Note that neither concept is write nor wrong, they are just useful ways to view the world.
- The Hicksian compensated demand is given by:

$$
c_{i}=\alpha_{i}\left(\frac{p^{*}}{p_{i}}\right)^{\frac{1}{\theta}} C^{*}
$$

while holding C^{*} fixed. The idea is to keep "utility" constant. That is:

$$
p^{*} C^{*}=W
$$

requirese that:

$$
\frac{\partial p^{*}}{\partial p_{i}} C^{*}=\frac{\partial W}{\partial p_{i}} .
$$

Thus,

$$
\epsilon_{i}^{W}=\frac{\partial W}{\partial p_{i}} \frac{p_{i}}{W}=\frac{\partial p^{*}}{\partial p_{i}} \frac{p_{i}}{1} \frac{C^{*}}{W}=\epsilon_{i}^{*}
$$

In other words, wealth goes up in the same proportion as prices.

- Thus, the Hicksian elasticity is obtained via:

$$
\begin{aligned}
\frac{\partial c_{i}}{\partial p_{i}} & =\frac{1}{\theta} C^{*} \alpha_{i}\left(\frac{p^{*}}{p_{i}}\right)^{\frac{1}{\theta}}\left[\frac{\partial p^{*}}{\partial p_{i}} \frac{1}{p^{*}}-p_{i}^{-1}\right] \rightarrow \\
\frac{\partial c_{i}}{\partial p_{i}} \frac{p_{i}}{c_{i}} & =\frac{1}{\theta}\left[\frac{\partial p^{*}}{\partial p_{i}} \frac{p_{i}}{p^{*}}-1\right] \rightarrow \\
\bar{\epsilon}_{i}^{i} & =\frac{1}{\theta}\left[\epsilon_{i}^{*}-1\right] .
\end{aligned}
$$

- In the case of the the cross-Hicksian demand:

$$
\begin{aligned}
\frac{\partial c_{i}}{\partial p_{j}} & =\frac{1}{\theta} C^{*} \alpha_{j}\left(\frac{p^{*}}{p_{j}}\right)^{\frac{1}{\theta}}\left[\frac{\partial p^{*}}{\partial p_{j}} \frac{1}{p^{*}}\right] \rightarrow \\
\bar{\epsilon}_{j}^{i} & =\frac{1}{\theta}\left[\epsilon_{j}^{*}\right] .
\end{aligned}
$$

- The inverse-demand (Marshallian demand) for good i take into account the effect on C^{*}. Thus, it's more convenient to work with the formula that uses wealth:

$$
\begin{aligned}
& x_{i}=\frac{\alpha_{i}}{p_{i}^{1 / \theta}}\left(p^{*}\right)^{\frac{1-\theta}{\theta}} W \\
& \begin{aligned}
\frac{\partial c_{i}}{\partial p_{i}}= & -\frac{1}{\theta} \frac{\alpha_{i}}{p_{i}^{1 / \theta}}\left(p^{*}\right)^{\frac{1-\theta}{\theta}} W \frac{1}{p_{i}}+\frac{1-\theta}{\theta} \frac{\alpha_{i}}{p_{i}^{1 / \theta}}\left(p^{*}\right)^{\frac{1-\theta}{\theta}} W \frac{1}{p^{*}} \\
= & -\frac{1}{\theta} c_{i} \frac{1}{p_{i}}+\frac{1-\theta}{\theta} c_{i} \frac{1}{p^{*}} \frac{\partial p^{*}}{\partial p_{i}} \frac{p_{i}}{p_{i}}
\end{aligned}
\end{aligned}
$$

Hence, we obtain:

$$
\epsilon_{i}^{i}=\frac{\partial c_{i}}{\partial p_{i}} \frac{p_{i}}{c_{i}}=\frac{1}{\theta} \underbrace{\left[\epsilon_{i}^{*}-1\right]}_{\text {Substitution }}-\underbrace{\epsilon_{i}^{*}}_{\text {Wealth Effect }} .
$$

- For the cross-elasticities we obtain:

$$
\begin{aligned}
\frac{\partial c_{i}}{\partial p_{i}} & =\frac{1-\theta}{\theta} c_{i} \frac{1}{p^{*}} \frac{\partial p^{*}}{\partial p_{i}} \frac{p_{j}}{p_{j}} \rightarrow \\
\epsilon_{j}^{i} & =\frac{1}{\theta} \underbrace{\epsilon_{j}^{*}}_{\text {Substitution }}-\underbrace{\epsilon_{j}^{*}}_{\text {Wealth Effect }}
\end{aligned}
$$

- Excercis: Show that $\epsilon_{j}^{*}>0$.
- Question: what happens when $1 / \theta<1$. Wealth effect dominates and $\epsilon_{j}^{i}<0$.
- In turn, if $1 / \theta>1$, we have that $\epsilon_{j}^{i}>0$.
- In turn, if $1 / \theta=1$, we have that $\epsilon_{j}^{i}=0$.
- What if $1 / \theta<0$? We run into problems since operator is convex. Still, we can use the to show which (unique) good would be bought and determine Utility as function of the change in p_{i}.

1.3 Deriving Limits

- In mathematics,

$$
\left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)^{\frac{1}{1-\theta}}
$$

is called the generalized mean.

- When $\theta=-1$, we have the Euclidean Norm.
- Note that when $\theta=0$, we have a weigthed average.
- $\theta=1 / 2$ we have:

$$
\left(\sum_{i=1}^{N} \alpha_{i}^{1 / 2} x_{i}^{1 / 2}\right)^{2}
$$

- When $\theta=2$, we obtain a geometrice mean:

$$
\left(\sum_{i=1}^{N} \alpha_{i}^{2} x_{i}^{-1}\right)^{-1} .
$$

We now derive some special limits:

1.4 Log-Utility Case

$$
\begin{aligned}
& \lim _{\theta \rightarrow 1}\left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)^{\frac{1}{1-\theta}} \\
= & \lim _{\theta \rightarrow 1} \exp \left[\frac{1}{1-\theta} \log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)\right] \\
= & \exp \left[\lim _{\theta \rightarrow 1} \frac{1}{1-\theta} \log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)\right] .
\end{aligned}
$$

We can pass limits since exp is a continuous function (See Rudin).
Since

$$
\lim _{\theta \rightarrow 1} \sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}=1 .
$$

The term inside the exp is of the form $0 / 0$. We can apply L'Hospital. Thus:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 1} \frac{1}{1-\theta} \log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right) \\
= & \lim _{\theta \rightarrow 1} \frac{1}{\frac{1}{-1}} \frac{\sum_{i=1}^{N} \alpha_{i}^{\theta}\left(\log \alpha_{i}\right) x_{i}^{1-\theta}-\alpha_{i}^{\theta}\left(\log x_{i}\right) x_{i}^{1-\theta}}{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}} \\
= & \cdot \lim _{\theta \rightarrow 1} \frac{1}{1} \frac{-1 \sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\left[\left(\log \alpha_{i}\right)-\log x_{i}\right]}{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}} \\
= & \cdot \lim _{\theta \rightarrow 1} \frac{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\left[\log \left(x_{i} / \alpha_{i}\right)\right]}{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}} \\
= & \frac{\lim _{\theta \rightarrow 1} \sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\left[\log \left(x_{i} / \alpha_{i}\right)\right]}{\lim _{\theta \rightarrow 1} \sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}} \\
= & \sum_{i=1}^{N} \lim _{\theta \rightarrow 1} \alpha_{i}^{\theta} x_{i}^{1-\theta}\left[\log \left(x_{i} / \alpha_{i}\right)\right] \\
= & \log \left[\prod_{i=1}^{N}\left(\frac{x_{i}}{\alpha_{i}}\right)^{\alpha_{i}}\right]
\end{aligned}
$$

I used the chain rule, and the fact that the derivative of x_{i}^{α} w.r.t. α is $x^{\alpha} \log x$. Since the limit was inside and exponential:

$$
\lim _{\theta \rightarrow 1}\left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)=\prod_{i=1}^{N} x_{i}^{\alpha_{i}} .
$$

The function becomes Cobb-Douglass with a scalar adjustment:

$$
\left(\prod_{i=1}^{N} \alpha_{i}^{\alpha_{i}}\right)^{-1}\left[\prod_{i=1}^{N} x_{i}^{\alpha_{i}}\right]
$$

1.5 Leontieff-Knightian Limit

$$
\begin{aligned}
& \lim _{\theta \rightarrow \infty}\left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)^{\frac{1}{1-\theta}} \\
= & \lim _{\theta \rightarrow \infty} \exp \left[\frac{1}{1-\theta} \log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)\right] \\
= & \exp \left[\lim _{\theta \rightarrow \infty} \frac{1}{1-\theta} \log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)\right] .
\end{aligned}
$$

This function is again of the form $0 / 0$ (why?).
Then, applying L'Hospital:

$$
\begin{aligned}
& \lim _{\theta \rightarrow \infty} \frac{1}{1-\theta} \log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right) \\
= & {\left[\lim _{\theta \rightarrow \infty} \frac{1}{(1-\theta)^{2}}\left[\log \left(\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\right)\right]^{-2}\right] \lim _{\theta \rightarrow \infty} \frac{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\left[\log \left(x_{i} / \alpha_{i}\right)\right]}{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}} . }
\end{aligned}
$$

First case: one $\alpha_{i}=1$. Then, clearly, $U(x)=x_{i}$. So in the interesting case:

$$
\begin{aligned}
\frac{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}\left[\log \left(x_{i} / \alpha_{i}\right)\right]}{\sum_{i=1}^{N} \alpha_{i}^{\theta} x_{i}^{1-\theta}} & =\sum_{i=1}^{N} \frac{\alpha_{i}^{\theta} x_{i}^{1-\theta}}{\sum_{j=1}^{N} \alpha_{j}^{\theta} x_{j}^{1-\theta}} \log \left(x_{i} / \alpha_{i}\right) \\
& =\sum_{i=1}^{N} \frac{1}{\sum_{j=1}^{N} \frac{\alpha_{j}^{\theta} x_{j}^{1-\theta}}{\alpha_{i}^{\theta} x_{i}^{1-\theta}}} \log \left(x_{i} / \alpha_{i}\right) \\
& =\sum_{i=1}^{N} \frac{1}{\sum_{j=1}^{N} \frac{x_{j}}{x_{i}}\left(\frac{x_{i}}{\alpha_{i}} / \frac{x_{j}}{\alpha_{j}}\right)^{\theta}} \log \left(x_{i} / \alpha_{i}\right)
\end{aligned}
$$

Note that when we take the limit each side each summation, at least one term disappears when $\left(\frac{x_{i}}{\alpha_{i}} / \frac{x_{j}}{\alpha_{j}}\right)>1$. So whenever, $\frac{x_{i}}{\alpha_{i}}$ is bigger than at least one element, the entire term disappars. The only survivor term is: $\log \left(x_{i} / \alpha_{i}\right)$ for x_{i} / α_{i} the min. Now if two terms are equal, of more than two (n) are equal. We end up with summations of the form:

$$
n \frac{1}{n} \log \left(x_{i} / \alpha_{i}\right)
$$

for x_{i} / α_{i} the $\min \left\{x_{i} / \alpha_{i}\right\}$.

1.6 Questions

- Derive the case where $\theta \rightarrow-\infty$.

1.7 Infinite Countable Case

1.8 Integrable Case

1.9 Recursive Properties of the Aggregator

1.10 Aggregation Properties

- Statement of Gorman Aggregation.
- Corollary. Any CES operator satisfies the conditions for Gorman Aggregation and thus has a representative agent.

1.11 Connection to Standard Utility

1.12 Two Period Model
1.13 Infinite Horizon
1.14 Connection to E-Z Utility

