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Abstract

This paper integrates an implementation of monetary policy through the banking

system into an incomplete-markets economy with nominal rigidity. Monetary policy

sets policy rates and alters the supply of reserves. These tools grant independent

control over credit spreads and an interest-rate target. Through these tools, mone-

tary policy affects the evolution of real interest rates, credit, output, and the wealth

distribution. We decompose their effects into a combination of the interest and credit

channels that depend on the size of the central bank’s balance sheet. The model pro-

vides insights regarding when are counter-cyclical central bank balance sheets ideal.

This model highlights a trade-off between worse micro economic insurance (insurance

across agents) and better macroeconomic insurance (insurance across states).
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1. Introduction

In modern economies, monetary policy (MP) is implemented by setting a policy-rate corridor

and supplying reserves.1 The textbook view is that these tools implement a desired nominal

interest rate, and, ultimately, this solely matters to stabilize aggregate demand. In practice,

there is more to MP. During the latest crises, all major central banks expanded their balance

sheets and reduced their corridor rates—see Figure 1—with the clear intention to ease credit

conditions. However, this unprecedented expansion was carried out instinctively, without

the backing of a consensual theoretical framework. To this day, there is still an ongoing

debate among central bankers regarding the principles that should guide their balance sheet

policies, (Schnabel, 2023, e.g.).

Figure 1: Total Asset Holdings of Major Central Banks

Although there is empirical evidence of the effects of balance sheet policies on credit markets

(Kashyap and Stein, 2000, e.g.,), the theoretical foundations of these effects are still a

work in progress. This paper is part of the ongoing research program to build theoretical

foundations that can be useful in ongoing policy debates. The paper examines MP in an

economy where banks face settlement frictions, and the central bank (CB) can control both

the quantity of reserves and the interest on reserves (IOR). The study analyzes these effects

in an incomplete-markets economy with aggregate-demand externalities.

1A policy-rate corridor is defined by an interest rate on reserves, the rate paid to banks holding central
bank reserves, and a discount rate, the rate charged to banks that borrow reserves from a central bank.
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The paper has two goals. First, to articulate how the supply of reserves and IOR affect

credit, interest rates, inflation, and output in this economy. Second, to prescribe guidelines

for ideal CB balance sheet management. A new policy insight is that the CB should operate

a counter-cyclical balance sheet. This recommendation results from a trade-off between

micro and macroeconomic insurance. On the one hand, a small balance sheet induces a

higher credit spread, harming idiosyncratic risk insurance (henceforth, micro insurance).

On the other hand, a smaller balance sheet increases the sensitivity of aggregate demand

to MP and reduces its sensitivity to aggregate shocks (henceforth, macro insurance).

The model includes households that face the risk of being laid off and demand credit to

smooth consumption during unemployment. Price and wage rigidities create an aggregate

demand externality, where the unemployment rate adjusts to produce an output gap that

is consistent with aggregate demand conditions, as in Blanchard and Gali (2010). This

unemployment risk generates a precautionary motive, which leads to an aggregate demand

amplification.

The transmission of MP includes banks that issue deposits and loans and use CB reserves

to settle deposit transfers. The potential shortage of reserves induces a frictional interbank

market and results in liquidity premia for nominal deposit and loan rates relative to the

IOR. Critically, liquidity premia depend on the size of the CB balance sheet. The CB

can control the level of interest rates by settings its IOR and control the credit spread by

conducting open-market operations (OMO).

There are three different regimes in which MP operates. In the first regime, reserves are

scarce, and the CB runs a corridor system. In this regime, the CB can target both the

real savings rate and the credit spread. Reductions in the real savings rate and the credit

spread stimulate demand via the interest-rate channel and a credit channel, respectively.

In the second regime, reserves are abundant, and the CB runs a floor system. In this

system, the CB can only target the real savings rate because OMO are neutral. In the

third regime, the IOR is so negative that the nominal deposit rate is fixed at a deposit-zero

lower bound (DZLB). In this liquidity trap regime, OMO are also neutral, but reducing

the IOR becomes pervasive as they only increase the credit spread. Because in a liquidity

trap regime, MP responses are ineffective, the CB balance sheet policy must be designed

considering macroeconomic insurance against adverse aggregate shocks.

Macroeconomic insurance stems from the ability of the CB to affect the real interest rates

in the long run. In the long run, the CB balance sheet influences the credit spread and,

thus, the real interest rate and quantity of credit. By influencing the amount of credit, a

counter-cyclical balance sheet policy can enhance macroeconomic insurance by reducing the
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number of households exposed to credit shocks and increasing their sensitivity to reductions

in the IOR. Moreover, starting from higher spreads allows the CB to reduce spreads more

during crises. The paper finds that the effectiveness of macroeconomic insurance increases

with higher spreads through a sensitivity and a scale effect. On the one hand, higher spreads

increase the sensitivity of aggregate demand to interest rates and decrease its sensitivity to

credit shocks. On the other hand, increasing spreads leaves more room to lowering rate in

the future.

The ability to provide macroeconomic insurance suggests that running counter-cyclical bal-

ance sheets may be desirable. In the normative section of the paper, we compare the

individual household welfare gains from a reduction in the CB balance sheet. Even though

households can anticipate a credit crunch event and, therefore, can self-insure, a smaller

balance sheet brings welfare gains to households that value more macro-insurance than

micro-insurance. These households belong to the middle class, the majority of the popula-

tion. An ideal CB balance sheet policy should trade off better macro insurance against the

worse micro insurance, taking into consideration which households benefit and which are

hurt from this trade off.

Connection with the Literature This paper connects with two common frameworks

used to analyze MP. One approach emphasizes the relation between money and prices and

the other between interest and prices. In the money and prices approach, (Lucas and

Stokey, 1987; Lagos and Wright, 2005), there is a tight connection between prices and

outside money. In the interest and prices approach, the new-Keynesian model, MP controls

real rates directly because prices are rigid. Neither framework emphasizes the direct effect

of MP on credit. The model here establishes a connection between money and credit and

studies how these affect the connection between interest and prices.2

Since 2008, there’s been an interest in how MP influences credit markets. A variety of

emerging incomplete-market models with room for MP emerged as a result. In fact, a first

generation of heterogeneous-agent models, Lucas (1980) and Bewley (1983) were about MP,

not about heterogeneity per se, but credit was absent in those models. Credit, of course,

has a tradition in heterogeneous-agent models (Huggett, 1993; Aiyagari, 1994, see the early

work of), but the literature evolved away from its initial interest in MP. A more recent

generation introduced nominal rigidities into these models and shows how MP responses

2Recent work in the new-Monetarist approach introduces credit to models where money is a medium
of exchange (Berentsen, Camera and Waller, 2007; Williamson, 2012; Gu, Mattesini, Monnet and Wright,
2013, see for example). Rocheteau, Weill and Wong (2021) studies an incomplete-market economy like the
one here.
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depend on the wealth distribution. For example, Auclert (2019) decomposes the responses

to policy into different forces, Kaplan, Moll and Violante (2018) introduce illiquid assets,

Werning (2015) and Bilbiie (2020) study amplification, and Guerrieri and Lorenzoni (2017)

investigate credit crunches.3 In all of these studies, MP uses a single instrument, the interest

rate. Here, we connect the CB balance sheet to the volume of credit and how this relates

to macroeconomic insurance.4

The MP implementation here is similar to the one in Bianchi and Bigio (2022) and other

models with a realistic implementation of MP.5 Relative to those papers, the banking side

is simplified while the emphasis is put on macroeconomic insurance. Korinek and Simsek

(2016) and Farhi and Werning (2016) study how debt limits are a macro-prudential tool to

mitigate demand recessions. Here, we argue that the CB balance sheet also has a macro-

prudential function. Moreover, we show that by limiting the amount of credit, the CB

balance sheet can increase the power of its tools after the arrival of shocks.

On the normative front, Bhandari, Evans, Golosov and Sargent (2021) study optimal

interest-rate policies to balance aggregate demand stabilization against insurance consid-

erations. The normative message that MP should actively target spreads is controversial:

Curdia and Woodford (2016) and Arce, Nuno, Thaler and Thomas (2020) suggests that a

floor system is ideal, but they do so in models where spreads do not bring benefits. Like

us, Lee, Luetticke and Ravn (2020) argue that greater spreads bring about macro-economic

stability, but in their case, spreads are induced by financial regulation not liquidity regu-

lation. Historically, financial stability has been conceived as a crucial element of MP, as

noted in Stein (2012), for example. Here, we showcase that controlling spreads allows MP

to enhance the power of its tools and bring macro-prudential benefits.

Organization. Section 2 lays out the core model. Section 3 describes the determination

of spreads and real rates and catalogs the MP regimes. Section 4 studies the benefits of

countercyclical balance sheet policies. Section 5 concludes.

2. Environment

3Other papers study mortgage-refinancing, i.e. Greenwald (2018) and Wong (2019).
4Brunnermeier and Sannikov (2012) study outside money in a Bewley-like economy with aggregate

shocks. Similarly, Lippi, Ragni and Trachter (2015) study the optimal helicopter drops in a two-agent
economy. Other models with cross-agent risk-sharing include Silva (2020) and Buera and Nicolini (2020).

5In the representative-agent new-Keynesian model, Piazzesi, Rogers and Schneider (2019) compare floor
with corridor regimes, Benigno and Benigno (2021) study how the reserve supply impacts aggregate-demand,
and Niepelt (2022) compares reserves with digital currency.
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2.1 From Central Bank Balance Sheets to Credit Spreads

In the following model, we embed bank intermediation into a general equilibrium setting

with households, firms, and a CB. In this section, we present the banking block. We derive

a formula that maps the CB balance sheet size into a credit spread. Appendix A presents

the bank balance sheet flows and a timeline corresponding to this block.

Notation. Individual-level variables are denoted with lowercase letters. Aggregate nom-

inal state variables are denoted with capital letters. Aggregate real variables are written

in capital calligraphic font. For example, at denotes a nominal deposit amount, At is the

aggregate level of deposits, and At is the aggregate real deposits. We use an ss subscript

to denote steady-state objects. The superscripts b, h, and cb denote the aggregate vari-

ables held by banks, households, and the CB. We avoid superscripts when the reference is

unnecessary.

Banks. We consider a portfolio decision within an interval of time ∆. We take the limit

as ∆ → 0 in the general equilibrium block. Because there are no aggregate shocks within

the ∆ interval, the bank’s objective is to maximize expected profits. There is free entry and

perfect competition among banks.

The CB supplies a quantity of reserves, M b, sets an interest on reserves im, and a penalty

spread over the interest on reserves, ι, at which banks can borrow reserves from an overnight

facility. These policy variables are exogenous in this section.

At the start of the ∆ interval, banks chose nominal deposits, a, nominal loans, l, and reserve

holdings, m. Deposits, loans, and reserves earn corresponding rates ia, il, and im. Loan and

deposit rates are equilibrium objects; im is a policy choice. After the portfolio decision is

made, banks face random payment shocks (as in Bianchi and Bigio, 2022). Payment shocks

ω are i.i.d. and take two possible values with equal probability, ω ∈ {−δ,+δ} where δ ≤ 1.

If ω = δ, a bank receives δa deposits from other banks. If ω = −δ, the bank transfers δa

deposits to other banks. In the aggregate, deposits remain within the banking system. As

a result of this movement of liabilities, an asset transfer is needed to settle the transfers. A

fundamental assumption is that loans are illiquid in the sense that they must remain with

the bank that issues the loan during the ∆ interval. As a result, deposit flows are settled

with reserves.

After the payment shock, the reserve balance of a bank is:

b = m+min {ω, 0} a.
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That is, if the bank suffers a withdrawal, its reserve balance is reduced and could be negative

if m is sufficiently small. If the bank experiences an inflow of deposits, its balance is

unchanged until its position is settled. The underlying assumption is that a bank that

receives a deposit inflow cannot lend the reserves it is owed even though deposits never

leave the banking system. Since ω is random the reserve balance is not controlled perfectly.

A bank with a negative balance must close its negative reserve position, either by borrowing

reserves from other banks or the CB discount facility.

The aggregate deficit and the surplus balances are the sum of all the positive and negative

balances:

B− ≡ 1

2
max

{
δAb −M b, 0

}
and B+ ≡ 1

2

(
M b +max

{
M b − δAb, 0

})
.

The max operator in the surplus balance captures the possibility of a positive balance after

an outflow.

Interbank Market. After reserve balances are determined, an interbank market opens.

If a bank has a surplus b, it lends the fraction ψ+ to other banks; the remainder balances

(1− ψ+) b remain idle. If a bank has a deficit, −b, it only borrows the fraction ψ− from

other banks; the remainder deficit, − (1− ψ−) · b is borrowed from the CB discount facility.

The cost of borrowing from the CB is im + ι.6

Clearing in the interbank market requires that the total amount of reserve balances lent is

equal to the amount borrowed, ψ−B− = ψ+B+. The trading probabilities {ψ+, ψ−} result

from trading frictions.7 We follow Afonso and Lagos (2015) and assume that these frictions

result from the interbank market’s over-the-counter (OTC) nature. Here, we adopt the

formulation in Bianchi and Bigio (2017) that renders analytic expressions. In particular,

let θ = B−/B+ ≤ 1 be the interbank “market tightness which measures the ratio of the

demand for funds relative to the available funds. Then, the trading probabilities are given by

{ψ+, ψ−} = {1− exp (−λ) , θ−1 (1− exp (−λ))} where λ captures the extent of the friction.

If λ→ ∞, the setting collapses to a Walrasian market.8 In turn, the average rate at which

6The CB faces two solvency restrictions: ι ≥ 0 and ι+ im ≥ 0. Without these constraints, banks could
earn arbitrage profits at the expense of the CB.

7Trading frictions in the interbank market are well-documented (Ashcraft and Duffie, 2007; Afonso and
Lagos, 2014).

8When λ → ∞, the interbank market becomes Walrasian, and the interbank-market rate converges to
im.
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banks lend and borrow reserve is:

i
f
(θ, im) = im + ι · (θ + (1− θ) exp (λ))1/2 − 1

(1− θ) (exp (λ)− 1)
. (1)

Given the trading probabilities, the average interbank rate, and the cost of borrowing from

the discount window, the marginal cost of closing a reserve deficit and marginal benefit of

a reserve surplus are given by:

χ− = ψ−
(
i
f − im

)
+ (1− ψ−) · ι, and χ+ = ψ+

(
i
f − im

)
.

We use these marginal costs to obtain a function that accounts for the average benefit (cost)

of a reserve balance, b:

χ(b; θ, ι) =

χ− (θ) b if b ≤ 0

χ+ (θ) b if b > 0
. (2)

We present further details of the interbank market in Appendix B. For now, all we need to

know is that a given market tightness maps into an average cost of closing negative reserve

positions and benefits from lending a surplus, as given by χ . This is critical to obtain an

equilibrium spread as a function of the CB balance sheet.

The Bank Problem and Equilibrium Spreads. We turn to the bank’s problem.

Problem 1 [Bank’s Problem] A bank maximizes its instantaneous expected profits:

max
{l,m,a}∈R3

+

il · l + im ·m− ia · a+ E [χ (b; θ, ι)]

subject to the budget constraint l +m = a.

This bank problem is piece-wise linear. At the individual level, banks will be indifferent

among a subset of portfolios—within a cone in the {m, a}-space. However, at the aggregate
level, the ratio of reserves to deposits pins down

{
il, ia

}
consistent with zero expected

profits.9

Next, we explain how the ratio of CB liabilities to private liabilities, determines the equi-

librium loan and deposit rates. Define the aggregate liquidity ratio as Λ ≡ M b/Ab, a ratio

9This feature is analog to what occurs when firms compete and operate constant returns to scale tech-
nologies: firms earn zero profits, their scale is indeterminate, but the ratio of inputs pins down relative
prices.
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that measures how well bank deposits are covered with reserves. Employing definitions, the

interbank market tightness can be expressed in terms of Λ:

θ (Λ) ≡ max

{
δ

Λ
− 1, 0

}
. (3)

Observe that the interbank tightness decreases with Λ: the higher the liquidity ratio, the

lower the fraction of banks that will be in deficit on average.10 If we substitute (3) into

(2) and exploit the zero-profit condition of banks, we obtain the equilibrium borrowing and

lending rates.

Proposition 1 [Nominal Rates and Real Spread] Given {Λ, im}, the nominal loan and

deposit rates are:

il ≡ im +
1

2

(
χ+ + χ−)︸ ︷︷ ︸

liquidity premium

and ia ≡ im +
1

2

(
χ+ + χ−) −δ

2
χ−.︸ ︷︷ ︸

liquidity risk

(4)

In all cases, banks earn zero-expected profits (reserve surplus profits net out with reserve

deficit losses).

Proposition 1 establishes that the nominal borrowing and lending rates carry different liq-

uidity premia above the IOR. By holding an additional reserve, the bank earns the IOR

plus an expected liquidity service: If the bank ends in surplus, the liquidity service is the

marginal expected return from lending reserves, χ+. If the bank ends in deficit, the liquidity

service is the value of avoiding the average borrowing cost, χ−. Since each scenario occurs

with equal likelihood, the liquidity service is 1
2
(χ+ + χ−). Loans earn a premium over re-

serves to compensate for the lack of a liquidity service. In turn, the liquidity premium

of deposits also captures the liquidity risk of deposits. If the bank ends in deficit, on the

margin, deposits increase the deficit by δ and cost χ−. Since the probability of a deficit

scenario is one-half, the liquidity risk of deposits is δ
2
χ−.

The loan deposit (credit) spread follows directly:

∆r = il − ia =
δ

2
χ−
(
max

{
δ

Λ
− 1, 0

})
. (5)

Figure 2 depicts ∆r as functions of Λ. The credit spread is positive when the liquidity ratio

is below the amount needed to satisfy the clearing of deficit of all banks Λ < δ. Within

10Note that, θ = 0 for any Λ ≥ δ which reflects that if the liquidity ratio is above δ, no bank is in deficit.
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(b) Equilibrium spread given ι and Λ

Figure 2: Borrowing-Lending Spread as Function of Λ( CB Balance Sheet)

Note: The figure plots the components of the equilibrium spread. The figure is constructed using the calibration presented in
Section 3.

[0, δ], the spread decreases with Λ, reflecting that providing more reserves reduces the need

to access the discount facility. When reserves are ample, Λ > δ, the interbank market shuts

down and {χ+, χ−} = 0 because no bank is ever in deficit.11

The following section embeds the intermediation block into the GE model. Before we

proceed, we discuss some features.

Digression: model assumptions. Several modeling features merit discussion. First, a

critical assumption is that loans are illiquid. If banks could easily sell loans to cover deposit

outflows, there would be no spread. However, there are many reasons why loans are less

easy to sell than reserves, such as private information, technical specialization, and legal

or transaction costs. Second, banks operate without equity or liquidity constraints. These

features are left out for parsimony. While these constraints could change the sensitivity of

spreads to the CB balance sheet, they would not alter the paper’s conclusion.12 Third, the

CB keeps a constant penalty spread ι. In principle, ι could be an independent instrument,

but it is not used in practice. Appendix F.2 presents a discussion of alternative implemen-

tations of spreads through MP and relates these alternative implementations to actual CB

11If Λ > δ, then il = ia = im. In the knife-edge case where Λ = δ, then any rates that satisfy
il − ia ∈

[
0, δ2χ

− (0)
]
and ia = im +

(
il − ia

)
· (1− δ) /δ∆r are possible. We abstract away from this case.

12If the model features capital requirements or limited capital mobility, bank equity becomes a state
variable. While effective reserve requirements are small, current bank regulation imposes minimum liquidity
requirements. See den Heuvel (2002) for an early model of bank equity capital. Wang (2019) studies the
pass-through of MP as a function of the level of bank equity and liquidity requirements.
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practices. Finally, other missing elements are government bonds and non-bank intermedi-

aries. In practice, CB conducts OMO by purchasing government bonds. Here, negative

holdings of Lf can be interpreted as government bonds.13

2.2 General Equilibrium

We now present the general equilibrium setting. Time is now indexed by t ∈ [0,∞). We take

a continuous time limit of the bank’s problem, letting ∆ → 0, and work directly with the

formulas for the deposits and loan rates.14 The non-financial sector features a measure-one

continuum of households, monopolistically competing retailers, and competitive intermedi-

ate input firms. Implicitly, banks issue loans to borrower households and issue deposits to

lender households. Credit emerges to smooth unemployment spells. Since banks make zero

profits, they are simple pass-through entities. It is understood that households own banks,

so we do not include bank profits in their household budget constraints since these are zero.

The price of the good in terms of money is Pt, and the rate of inflation is πt ≡ Ṗt/Pt. As

mentioned above, the CB sets the IOR and the money supply.

The Demand-Side Block: Households. Households face a consumption-saving prob-

lem with instantaneous utility U (ct) ≡
(
c1−γ
t − 1

)
/ (1− γ) over a bundle of differentiated

final goods differentiated,
{
yjt
}
j∈[0,1]:

ct =

(� 1

0

(
yjt
)1−1/ε

dj

) 1
1−1/ε

.

The individual demand for retail goods follows from the standard cost minimization as-

sumptions: yit = (Pt/p
i
t)

ε
ct where p

j
t is the price of good j and Pt =

(� 1

0

(
pjt
)1/ε

dj
)ε
.

Households only differ in their employment status z ∈ {e, u}, where e and u refer to em-

ployment and unemployment states. The transition from employment to unemployment,

Γue
t , is the exogenous constant ξ. By contrast, the transition rate from unemployment to

employment, Γeu
t , is endogenous.

13Typically, non-bank intermediaries hold bonds as a settlement instrument. Thus, the non-bank and
bank institutions interact through the bond market. The present model can be extended to incorporate
government bonds along those lines. Bianchi and Bigio (2022) introduce bonds that are more liquid than
loans but less liquid than reserves.

14Within ∆ time interval, average profits are ∆ ·πb—all rates are scaled by ∆ and the objective is linear.
Since bank policy functions are independent of ∆, the equilibrium rates of Proposition 1 also scale with ∆,
even as ∆ → 0. The reserve balance, bt, is a random variable. If we were to track bt as a function of time,
this stochastic process would not be well defined. However, treating bt+∆ as the single realization of the
random variable is well defined, and so is the limit of the deposit and loan rates.
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The income of the employed and unemployed are:

wt (e) =
(
1− τ l

)
wt + Tt, wt (u) = b+ Tt.

The real wage of the employed is wt and is taxed at rate τ l. b is an exogenous unem-

ployment benefit, and Tt are transfers (taxes) that balance the government’s budget. The

unemployment benefit b provides a subsistence income to the unemployed when transfers

are zero.

Households store wealth in deposits, aht , or currency, mh
t , and can borrow loans, lht . We

introduce currency to articulate a DZLB that limits the stabilization power of interest rates

and provides a normative role to the CB balance sheet. By convention, assets are nominal

and
{
aht ,m

h
t , l

h
t

}
≥ 0. The real rates on deposits and loans are rat ≡ ia−πt and r

l
t ≡ il−πt,

respectively. Currency does not earn interest; its real return is −πt. Households chose{
aht ,m

h
t , l

h
t

}
that satisfy a budget constraint:

(
aht +mh

t

)
/Pt = st + lht /Pt,

where st is the household’s real financial wealth, their only state variable. The law of motion

of st is:

dst =

(
rat
aht
Pt

− πt
mh

t

Pt

− rlt
lht
Pt

− ct + wt (z)

)
dt. (6)

Two immediate observations simplify this law of motion. First, currency and deposits are

perfect substitutes. Hence, unlike models with a transaction demand, currency is only

held when the nominal deposit rate is less than or equal to zero. The second observation

is that households will never hold deposits and loans simultaneously. Combining these

observations, we rewrite (6) as:

dst = (rt (s) s− ct) dt+ dwt where rt (s) ≡


rat if st > 0

rlt if st ≤ 0.

(7)

An important feature is that employment risk cannot be perfectly insured. In particular,

credit is limited by an exogenous debt limit s̄ ≤ 0. That is, if s = s̄, then dst ≥ 0. In

addition to the debt limit s̄, we introduce a time-varying borrowing limit, s̃t ∈ [s̄, 0]. If
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households exceed the borrowing limit, st ≤ s̃t, they cannot increase their debt principal,

although they can roll over the principal. Thus, ct ≤ wt (z) in s ∈ [s̄, s̃t]. We distinguish

between borrowing and debt limits for mathematical convenience and economic appeal.15

The solution to the household’s problem produces a joint distribution f (z, s, t) with cumu-

lative distribution denoted by F . Denote the fraction of unemployed households as Ut. The

distribution satisfies the consistency condition Ut =
�∞
s̄
f (u, s, t) ds = 1 −

�∞
s̄
f (e, s, t) ds.

The household’s problem and the evolution of wealth are summarized by the following

HJB-KFE system:

Problem 2 [Demand Block]

I) The household’s value and policy functions are the solutions to the HJB equation:

ρV (z, s, t) = max
{c}

U (c)+V ′
s ·µ (z, s, t)+Γz′z

t [V (z′, s, t)− V (z, s, t)]+ V̇t, z′ ̸= z, (8)

where µ (z, s, t) ≡ rt (a) s − c + wt (z) s.t. (i) ṡ ≥ 0 at s = s̄, and (ii) ct ≤ wt (z) in s ∈
[s̄, s̃t).

II) The wealth distribution f satisfies:

∂

∂t
f (z, s, t) = − ∂

∂s
[µ (u, z, t) f (u, z, t)]−Γzz′

t · f (u, z, t)+Γz′z
t · f (e, z, t) , z′ ̸= z, (9)

with the boundary condition lims→∞
∑

z∈{u,e} F (z, s, t) = 1.

The problem described in the demand block is common to models where the distribution of

wealth is a state variable. The solution to the household HJB equation yields the dynamics

of savings, whereas the associated KFE governs the dynamics of f equations. As noted by

Achdou, Han, Lasry, Lions and Moll (2021), this model admits a positive mass of agents at

the debt limit, F (z, s̄, t) ≥ 0.

The Supply-Side Block: Employment, Production, and Prices. The supply-side

block features nominal price rigidity combined with labor-market frictions. Intermediate

goods firms use labor as their sole input and produce identical intermediate goods. Retailers

buy the input and sell the differentiated final goods to households in a monopolistically

15The borrowing limit allows studying a credit crunch. An unexpected jump in the debt limit is not
well-defined mathematically because a positive mass of households may violate debt limits if these increase
unexpectedly. This does not apply to the borrowing limit s̃t. The economic motivation is that banks may
want to roll over debt during crises while not increasing debt principals. If loan repayment is suddenly
forced, it can trigger a default which may lead to costly underwritings. Although banks may be unwilling
to extend loans, rollovers do not consume regulatory capital.
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competitive setting. The price adjustment cost arises at the retail level while the labor-

matching friction arises at the intermediate-good level.16 For simplicity, we assume that

risk-neutral managers control firms. Managers maximize profits and use a discount rate ρ.

We introduce these managers so that the steady-state unemployment rate is independent

of the asset market.17 Profits are taxed and distributed back to households, so the presence

of managers is irrelevant.

Retailer j purchases intermediate inputs xjt to produce yjt = xjt . The retailer’s problem is:

Problem 3 [Retailer’s Problem] Retailer j chooses the change in its individual price ṗjτ to

maximize

q
(
pjt , t

)
= max

{ṗjτ}

� ∞

t

exp (−ρτ)

[
pjτy

j
τ − pτx

j
τ

Pτ

− Θ

2

(
ṗjτ
pjτ

)2

Yτ

]
dτ,

subject to its individual demand, yit = (Pt/p
i
t)

ε
ct, and production function yjt = xjt .

The retailer takes the price of the intermediate good, pt, and the price of the aggregate

final good bundle, Pt, as given. The retailer chooses ṗ
j
τ to maximize the present discounted

value of real profits minus a Rotemberg price-adjustment cost with coefficient Θ. The state

variable of the retailer is pjt . The real retailer marginal cost is mct ≡ pt/Pt, measured in

terms of final goods. The price-adjustment cost are in terms of effort and do not consume

resources. The real marginal cost appears in the following standard Phillips curve:

Lemma 1 The path of prices satisfies the following Phillips curve:(
ρ− Ẏt

Yt

)
πt =

ϵ

Θ

(
mct −

ϵ− 1

ϵ

)
+ π̇t. (10)

An intermediate good firm produces one good per worker. Its labor force evolves according

to ṅt = jtvt − ξnt, where ξ is the exogenous job-separation rate, jt is the per-vacancy job-

filling rate, and vt is the firm’s vacancy postings. Vacancies cost µ in real terms, and the

firm takes the hiring rate as given. The intermediate good firm’s problem is:

16We could subsume the intermediate-goods sector into the final goods sector, but we keep sectors separate
for a better exposition.

17If households owned firms, we would need to assign a firm discount factor. In incomplete-market
economies, there is no standard way of assigning a discount factor to the firm. To avoid this complication,
we assume a constant firm discount factor.
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Problem 4 [Intermediate Producer’s Problem] The intermediate goods firm chooses

G (n, t) = max
{vτ}

� ∞

t

exp (−ρτ)
[
pτ
Pτ

xτ −
wτ

Pτ

nτ − vτµ

]
dτ,

subject to its production function, xt = nt, and its worker flows ṅt = jtvt − ξnt.

The intermediate good firm chooses vacancies to maximize its real operational profits net

of hiring costs. For that, the firm must post vacancies to offset its worker losses. The state

of the intermediate-good firm is its workers.

Wages are determined ex-post. As in Caballero and Hammour (1998), workers can abscond

the fraction (1− η) of the intermediate good output. If they do so, the firm loses all its

production. To avoid losing its production, wages are renegotiated after production, which

results in an intermediate-goods labor share of 1 − η. Thus, wt = (1− η) pt.
18 Neither

workers nor managers can credibly commit to a compensation package or to separation

contingencies. The following Lemma characterizes the intermediate good firm’s problem:

Lemma 2 The value of the intermediate-good firm is G (n, t) = gt · nt where gt is the value

of a worker:

gt = η ×
� ∞

t

exp (− (τ − t) (ρ+ ξ))mcτdτ. (11)

Equilibrium Job-Transition Probabilities. The flow of job matches depends on a

homogeneous-of-degree-1 matching function, Ξ (Ut, vt). It is convenient to define two auxil-

iary functions:

ϕ (x) ≡ Ξ (1, x) and J (x) ≡ Ξ
(
x−1, 1

)
.

The equilibrium job-filling rates and job-hiring rates are:

jt = J
(
vt
Ut

)
, Γeu

t = ϕ

(
vt
Ut

)
. (12)

The job-finding and job-filling rates are, correspondingly, increasing and decreasing in the

vacancy-to-unemployment ratio.

18A limit can approximate this construction. Fix a sequence of time intervals ∆t, 2∆t, ... For every
interval, assume that once workers are hired, workers may threaten the firm to divert 1 − η of output, in
which case the firms get zero. With ex-post negotiations, the labor share is 1− η.
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Given these rates, aggregate unemployment evolves according to

U̇t = ξ (1− Ut)− Γue
t · Ut. (13)

Since labor is indivisible, output is Yt ≡ 1 − Ut. From the wholesale firm, we obtain a

relationship between the vacancy-to-unemployment ratio and the value of a worker.

Proposition 2 [Beveridge Curve] Fix gt. Then, the equilibrium vacancy-to-unemployment

rate is:

vt
Ut

= J −1

(
µ

gt

)
. (14)

Government Block. The CB has two instruments: the money supply, Mt, and the IOR,

imt . The CB holds, Lcb
t as assets which it matches with its liabilities,Mt = Lcb

t . The CB uses

OMO to alter its balance sheet, dMt = dLcb
t . The money supply is held as reserves, M b

t ,

and currency, M0t, so Mt = M0t +M b
t . Because of interest rate differentials and discount

lending, the CB generates revenues:

Πcb
t =

portfolio profits︷ ︸︸ ︷
iltL

cb
t − imt (Mt −M0t)+

operational revenue︷ ︸︸ ︷
ι
(
1− ψ−

t

)
B−

t . (15)

The CB earns ilt on Lcb
t , and pays imt on its liabilities (net of currency), and earns ι ·(

1− ψ−
t

)
B−

t from its discount loans. The revenues and the surplus of income taxes minus

the unemployment benefit are distributed through lump-sum taxes/transfers:

PtTt = Πcb
t + Pt

(
τ l · (1− Ut)− b · Ut

)
. (16)

Tt adjusts passively. It is convenient to express the government budget constraint in real

terms:

Tt = ∆rt ·
∑

z∈{u,e}

� ∞

0

sf (z, s, t) ds︸ ︷︷ ︸
CB operational revenue Πcb

t /Pt

+ τ l (1− Ut)− b · Ut︸ ︷︷ ︸
fiscal surplus

. (17)

Markets. There are various markets: the market for reserves and currency, the interbank

market, the deposit and loan markets, the intermediate goods market, the final goods

market, and the labor market—Appendix C presents the corresponding market clearing
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conditions. However, a single clearing condition in real wealth summarizes equilibrium in

all markets:

Lemma 3 [Real Wealth Clearing and Walras’s Law] Let nominal rates be given by (4) and

let transfers be given by (16). Then, market clearing in real wealth,

0 =
∑

z∈{u,e}

� ∞

s̄

sf (z, s, t) ds for t∈[0,∞), (18)

implies market clearing in all asset markets. Furthermore, Walras’s law holds.

Walras’s law implies that we can guarantee to clear the goods market,

Yt = Ct ≡
∑

z∈{u,e}

� ∞

s̄

ct (z, s) f (s, t) ds

if (18) is satisfied, and vice-versa.

Equilibrium. A price path is the function
{
P (t) , il (t) , ia (t)

}
: [0,∞) → R3

+. A policy

path is the function {imt ,Mt} : [0,∞) → R2
+. Next, we define an equilibrium.

Definition 1 [Perfect Foresight Equilibrium.] Given an initial condition for the distribution

of wealth, f0, and an initial price level, P0, a policy path, a perfect-foresight equilibrium is

given by (a) a price path, (b) a path for the real wealth distribution f , (c) a path of aggregate

bank holdings
{
Lb
t ,M

b
t , A

b
t

}
t≥0

, (d) unemployment flows, and (e) household’s policy
{
c,mh

}
and value functions {V }t≥0, such that:

1. The path of aggregate bank holdings solves the static bank’s problem (1),

2. The household’s policy rule and value functions solve the household’s problem (2),

3. The unemployment transitions satisfy (13),

4. The government’s policy path satisfies the budget constraint (15),

5. All markets clear (18) and the law of motion for f is consistent with individual deci-

sions.

A steady state occurs when ∂
∂t
f (z, s, t) = 0 and

{
rat , r

l
t

}
are constant. For the rest of the

paper, we consider steady states with zero inflation.
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Digression: Model Assumptions. The model marries new-Keynesian price rigidities

with labor-market frictions to create unemployment flows resulting from insufficient de-

mand. This differs from the standard new-Keynesian model, which focuses on the intensive

margin of hours. The model’s emphasis on unemployment allows for business cycle dynam-

ics driven by firing and hiring rates (Davis, Faberman and Haltiwanger, 2006).19 We use

ex-post bargaining, following Caballero and Hammour (1998), so that wages do not depend

on the worker’s outside option. The labor-market feedback to aggregate demand is similar

to that found in other studies.20

3. Positive Analysis

A spread between two nominal rates equals the spread between their corresponding real

counterparts. This observation implies that if a CB can control credit spreads, it can

control real credit. If that is the case, the CB can have long-run real effects. This section

investigates the effects of the CB’s tools. We start by describing the implementation of

credit spreads and then discuss these instruments’ long-run and short-run effects.

3.1 From Instruments to Rates and Spreads

From (5), we know that the credit spread is a function Λt. A natural question is when does

OMO induce effects on Λt? The answer depends on the level of the IOR and the CB balance

sheet. To articulate this point, we focus on a given instant and momentarily suppress the

t sub-index. Toward the characterization, holding an IOR fixed, we compute, θ (im), the

lowest possible interbank market tightness consistent with a positive deposit rate:

Problem 5 [Minimal Market Tightness]

θ (im) ≡ min
θ∈[0,∞)

θ subject to im +
1

2

(
χ+ (θ) + (1− δ)χ− (θ)

)︸ ︷︷ ︸
ia

≥ 0.

There is a lower bound on the interbank market tightness because households can exchange

deposits for currency. Thus, deposit rates may never drop below the return on currency.

19This is the motivation in other new-Keynesian models with unemployment such as Blanchard and Gali
(2010); Gertler and Trigari (2009), and Christiano, Trabandt and Walentin (2011).

20Michaillat and Saez (2015) obtain a similarly tractable model assuming all matches are destroyed im-
mediately after production. Importantly, unemployment risk feeds back into aggregate demand conditions,
a feedback also found in Ravn and Sterk (2020) and Challe (2020).
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From the bank’s first-order conditions, this induces a lower bound on the interbank-market

tightness. The solution to this problem is trivial: when im ≥ 0, θ (im) = 0. When im < 0,

then θ (im) > 0 is exactly the tightness consistent with a zero deposit rate. With θ we can

obtain the real currency balances as a function of im and the ratio of the size of CB balance

sheet, Lcb, relative to private savings,
∑

z∈{u,e}
�∞
0
sfds:

M0
(
im,Lcb

)
=

I[im<0]

1 + θ (im)− δ
·max

{
(1 + θ (im)) · Lcb − δ ·

� ∞

0

sf (s, t) ds, 0

}
. (19)

Thus, the IOR must be sufficiently negative and the balance sheet sufficiently large for

currency to be held. The liquidity ratio is then:

Λ
(
Lf , im

)
=

Lcb −M0
(
im,Lcb

)∑
z∈{u,e}

�∞
0
sfds−M0 (im,Lcb)

. (20)

Since the liquidity ratio determines the credit spread, we have a map from
{
im,Lcb

}
to

{∆r, ia}.

The analytic expression for the liquidity ratio allows us to construct a taxonomyMP regimes,

as depicted in Figure 3. The policy instruments,
{
im,Lcb

}
, have different qualitative effects

in each regime.

δ

0

Floor
Regime

Corridor
Regime

Liquidity
Trap

Λ

im

δ
(1+θ(im))

Figure 3: Three Monetary Policy Regimes

Note: The figure presents the MP regimes as a function of Λ and im.

The following Proposition characterizes these regimes.
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Proposition 3 [Properties of Equilibrium Rates and Spreads] Consider a distribution of

real wealth f and a price level P . The effects of policy instruments are given by:

Corridor Regime. If Λ
(
Lf , im

)
< δ/ (1 + θ (im)), then il > ia > im and M0 = 0.

Furthermore,

dia

dim
= 1,

d∆r

dim
= 0,

dia

dLcb
= − 1

2Lcb

(
χ+
θ + (1− δ)χ−

θ

)
Λ

< 0,
d∆r

dLcb
= − δ

2Lcb

χ−
θ

Λ
< 0.

Floor system (satiation). If im > 0 and Λ
(
Lcb, im

)
> δ, then il = ia = im, ∆r = 0

and M0 = 0. Furthermore,

dia

dim
= 1,

d∆r

dim
=

dia

dLcb
Lcb =

d∆r

dLcb
Lcb = 0.

Liquidity Trap. If im < 0 and Λ > δ/ (1 + θ (im)), then il > ia = 0 and M0 > 0.

Furthermore,

d∆r

dim
= −δ χ−

θ (δµ− 1)(
χ+
θ (δµ− 1) + (1− δ)χ−

θ (δµ− 1)
) < 0,

dia

dimt
=

dia

dLcb
Lcb =

d∆r

dLf
Lcb = 0.

and d
dLcb [M0/P ] > 0.

When Λt < δ/ (1 + θ (im)), MP is in a corridor system. In this regime, the passthrough of

changes in im to the nominal deposit and loan rates is one and, therefore, do not affect the

credit spread. In turn, OMO reduces the spread and move both rates differentially. MP is

in a corridor system when the CB balance sheet is small and the IOR is sufficiently high.

MP policy is in a floor system or reserve satiation when imt > 0 and Λt > δ. When Λt > δ,

no bank faces a reserve deficit, so banks are satiated with reserves, and the interbank market

is inoperative. The regime is implemented with a large enough CB balance sheet. In this

regime, OMOs are irrelevant in the sense of Wallace (1981) because all assets have equal

rates of return. Hence, the CB loses the ability to affect spreads in a floor system.

A liquidity trap occurs when imt < 0 and Λt > δ/
(
1 + θlb (im)

)
. In a liquidity trap, the

deposit rate is zero. Moreover, OMOs are irrelevant in a different sense from Wallace

(1981): When the CB increases reserves by buying loans, the private sector responds by

reducing deposits and increasing currency, exactly as required to keep the liquidity ratio

constant. We can observe this effect by inspecting the equations (19) and (20). While OMOs

are irrelevant in a liquidity trap, a reduction in imt provokes an increase in the loan rate,
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contrary to the effects in the other regimes: Since the deposit rate cannot fall below zero,

banks charge a higher loans rate to break even.21 Appendix F.2 presents a three dimensional

plot that shows how different combinations of imt and Λt induce different combinations of

deposit and loan rates.

3.2 From Monetary Instruments to Transmission Channels

The previous section characterizes how MP instruments influence the nominal deposit rate

and the credit spread. Next, we discuss how these changes impact aggregate output and the

wealth distribution. To do so, we derive an aggregate-supply schedule and a generalized Eu-

ler equation that renders an analysis akin to the two-equation system of the new-Keynesian

model.

Supply Side Block-Aggregate Supply. The aggregate-supply schedule maps an output

path into an inflation path consistent with the labor-market flows and the Phillips curve.

These are given in the following proposition.

Proposition 4 [Equilibrium inflation] Fix an initial value of Y0 = 1 − U0. Then, for a

given path of aggregate output, γst ≡
Ẏ (t)
Y (t)

, the path of inflation is:

πt =
ϵ

Θ

� ∞

t

e−(ρ−γs
τ )(τ−t)

(
mct −

ϵ− 1

ϵ

)
dτ (21)

where the marginal cost, the value of a worker, and the job finding rate is given by:

mct = gt ·

flow︷ ︸︸ ︷
(ρ+ ξ)−

change in worker value︷ ︸︸ ︷
α

1− α

(
ξ + γ̇sτ
ξ + γsτ

+ γsτ

[
1

1− Y0 exp
(� τ

0
γszdz

)])
η

,

gt =
µ

ηJ

ϕ( ξ + γsτ
1/Y0 exp

(� τ

0
γszdz

)
− 1

)−1


︸ ︷︷ ︸
job-filling rate

, and Γeu
t =

ξ + γst

exp
(
−
� t

0
γsτdτ

)
/Y0 − 1

. (22)

21The interest-rate reversal near a DZLB is documented by Heider, Saidi and Schepens (2019); Eggertsson,
Juelsrud, Summers and Wold (2019). Koby and Brunnermeier (2022) and Ulate (2020) present models of
bank capital and monopoly power where this effect is present.
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Inflation is the present value of the difference between marginal costs and an ideal markup.

In turn, the value of a worker is the present value of the revenue flows obtained by filling a

job in the intermediate good sector. Because revenue flows are proportional to the marginal

cost, the marginal cost can be expressed in terms of the current value of a worker and its rate

of change. The value of the worker relates to the job-finding rate through the intermediate

firm’s optimal-hiring decision (14). In equilibrium, the job-finding rate must be consistent

with the path of aggregate output. Hence, we have a mapping from aggregate output to

inflation.

Intuitively, when output increases above its steady-state level, the value of a worker also

increases to induce companies to hire more and keep up with the demand. This results in

higher marginal costs, which, in turn, adds inflationary pressure.

Demand Side Block - A Generalized Euler Equation. An aggregate-demand equa-

tion maps an inflation path to an aggregate consumption path according to a generalized

Euler equation.

Proposition 5 [Generalized Euler Equation] Given a path of π (t), ∆r (t), and ia (t), the

growth rate of aggregate consumption is:

γ (t)≡ Ċ (t)

C (t)
=
∑

z∈{e,u}

� ∞

s̄

ċ (z, s, t)

c (z, s, t)
· g (z, s, t) ds+

∑
z∈{e,u}

ċ (z, s, t)

c (z, s, t)
·G (z, s̄, t) ,

where g (z, s, t) ≡ c(z,s,t)
C(z,s,t)

.f (z, s, t) is the distribution of expenditures with CDF, G (z, s, t).

Consumption growth among unconstrained agents is:

ċ (z, s, t)

c (z, s, t)
=

substitution︷ ︸︸ ︷
rt (s)− ρ+

amplification︷︸︸︷
Γz′z
t ×

risk︷ ︸︸ ︷
J (z, s, t)

σ
for s > s̄ (23)

where z′ ̸= z and J is the jump in marginal utility after an employment-status change:

J (z, s, t) = U ′
(
c (z′, s, t)

c (z, s, t)

)
− 1. (24)

Among debt and borrowing constraint agents, consumption growth is:

ċ (z, s, t)

c (z, s, t)
=
ẇt (z)

wt (z)
, [s̄,s̃t) and

ċ (z, s̄, t)

c (z, s̄, t)
=
ẇt (z) + (ṙa +∆ṙ) s̄

wt (z) + (ra +∆r) s̄
. (25)
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Proposition 5 establishes that aggregate consumption growth is a weighted average of in-

dividual consumption growth with weights given by the expenditure distribution. The

individual growth rates depend on the household’s employment and financially-constrained

status. Importantly, the evolution of the wealth distribution, given by the KFE (9), is part

of this aggregate demand block as it determines the expenditure weights.

Among unconstrained households the Euler equation (23) has three terms. The first term,

which appears in linearized models, is the difference between the real rate and the discount

rate, scaled by the elasticity of intertemporal substitution, (rt (s)− ρ) /σ. Here, the relevant

real-interest rate depends on the debtor status. The second term, J, is a risk adjustment

that accounts for imperfect insurance. The adjustment is given by the jump in marginal

utilities after a change in the employment status. The third term scales the risk adjustment,

Γz′z. This term captures an aggregate-demand externality because the hiring rate, given by

(22), depends on aggregate demand.

Constrained households behave differently. They consume their labor income if they are

either borrowing constrained or debt constrained.

Steady State effects of CB Balance Sheet and Micro Insurance. In this model,

MP has long-run real effects. Because a spread between two nominal rates equals the spread

between the corresponding real interest rates, the control over spreads grants MP the power

to affect real long-run rates. We next describe these long-run effects.

When steady-state inflation is zero, output is constant and independent from spreads:

Proposition 6 [Steady-State Supply] Let πss = 0. Steady-state output, unemployment, and

the job-finding rate are:

Yss =
Γeu
ss

ξ + Γeu
ss

, Uss =
ξ

ξ + Γeu
ss

, Γeu
ss = ϕ

((
J −1

(
µ

η

ϵ

ϵ− 1
(ρ+ ξ)

))−1
)
.

To achieve a zero inflation target, the CB sets a consistent IOR. Hence the long-term IOR

is restricted by an inflation target. By contrast, the CB can choose its balance sheet freely.

Since labor flows are independent of household decisions, the CB balance sheet only affects

the extent of implicit insurance in the long run. To see this, we express the savings drift as

µ (z, s, t) =
Vs

−Vss

(
rt (s)− ρ+ Γz′zJ (z, s, t)

)
. (26)

Noticing that −Vs/Vss is positive and exploiting the sign of J for the employed and unem-

ployed, we obtain the following relationship:
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Corollary 1 [Savings Drift] In steady state, µss (e, s) ≥ 0 ≥ µss (u, s) and s ≥ s̄ binds only

for the unemployed.

This result reveals that households save to self-insure against unemployment spells. Propo-

sition 3 establishes that the CB’s balance sheet, Lcb, affects the steady-state spread. Thus,

even though steady-state unemployment is fixed, credit is affected by the CB steady-state

balance sheet, as the spread enters in the wealth drifts through rt (s). Holding r
a fixed, the

wealth drift for borrowers increases with the spread, meaning that they take on less debt

with greater spreads.

We illustrate the long-run effects of different Lcb
ss through Figure 4. The figure reports, for

different values of ∆rss induced by a different level of Lcb
ss, the real wealth distribution for

employed and unemployed households (Panels a and b, respectively) and the corresponding

real rates (Panel c). Larger spreads compress the wealth distribution, reduce the wealth

mass at s̄, and depress the real savings rate. Intuitively, the spread is isomorphic to a credit

tax.22

Equating the of the employed and unemployed to zero at zero wealth, we obtain a lower

bound for the spread ∆r̄ such that borrowing is suppressed entirely:

∆r̄ = ξ

[
U ′
(

b

1− τ

)
− 1

]
+ Γeu

ss

[
1− U ′

(
1− τ

b

)]
.

If ι > ∆r̄, the CB can compress the wealth distribution up to the point where credit

is entirely repressed. While repressing credit leads to the most equal society, this is the

society with the highest consumption risk. In general, by running a corridor system, the

CB can implement any spread ∆r ∈ [0,∆r̄]. While not as extreme as repressing credit

entirely, positive spreads compress the wealth distribution and limit micro insurance.

Long-run effects are prevalent in classic incomplete-market models, Lucas (1980), Bewley

(1983) , and Aiyagari and McGrattan (1998). In those models, the net supply of government

debt increases real interest rates. Here, the net supply is zero, but the gross supply has

effects because the liquidity properties of assets have effects on spreads.23

22Like all taxes, the spread has an incidence ton borrowers and lenders hat depends on the deposit supply
and loan demand elasticities. From Panel (c), the incidence is evidently higher for borrowers: the increase in
the borrowing rate is higher than the decrease in the savings rate. This reflects borrowers are less responsive
to changes in real interest rates.

23In Lucas (1980) and Bewley (1983) real-long run effects occur because the inflation rate determines the
equilibrium level of real balances. In Aiyagari and McGrattan (1998) credit co-exists with government debt
and the mix affects real rates.
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Figure 4: Steady State Effects of Real Spreads.

Note: In panels (a) and (b), the measure of households with assets s̄ is a probability mass (left scale), and the measure of
households with s > s̄ is a probability density (right scale). In panel (c), deposit and loan rates are expressed in annual
percentage terms.

Short-Run Equilibrium Dynamics. Next, we discuss the short-term effects of the CB

policy instruments. We assume the CB sets im according to a Taylor rule:

imt = īmt + ηt · (πt − πss) , (27)

where ηt is a time-varying response to inflation. We allow for time-varying coefficients to

isolate the direct effects of policy rates from the endogenous policy response. We let {̄imt , ηt}
to eventually converge and abide by the Taylor principle.

We express the real borrowing and deposit rates as a function im and Lcb. From Proposition

1, both nominal rates are functions of im and the market tightness, θ
(
Λ
(
Lcb, im

))
. Thus

rlt (s) = il
(
im, θ

(
Λ
(
Lcb, im

)))
− πt if and r

a
t (s) = ia

(
im, θ

(
Λ
(
Lcb, im

)))
− πt.

An equilibrium transition is a fixed point: Proposition 4 delivers a path of inflation πt [{γst } , Y0]
and the job-finding rate Γue

t [{γst } , Y0] consistent with aggregate output. In turn, Proposi-

tion 5 delivers a path for aggregate consumption γdt ({πt} , {Γue
t } , {Xt}), given the path of

inflation, job-finding rate, and any path of policy or borrowing limit. We solve

γdt ({πt [{γst } , Y0]} , {Γue
t [{γst } , Y0]} , {Xt}) = γst

numerically to describe the effects of policy instruments and explain results through this

mathematical structure.

In each experiment, we initiate at a steady state and study an unexpected event at t = 0.

For each variable xt ∈ Xt, we initiate its value at some x0+ and assume that the variable
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Scenario Shock x xss x0 Tx ζ̄x

I. IOR
η 1.5 0 1 0.2

īm 0.24% -2% 1 50

II. Spread
η 1.5 0 1 0.2

∆r 1% -1% 1 50

III. Credit Crunch
η 1.5 0 1 0.2

s̃ s̄ 0.03s 1 5

Table 1: Logistic Path - Changes in the IOR.

Note: This table lists the baseline calibration of parameters in the logistic paths in each experiments.

stays put for Tx periods, and then follows a logistic path:

xt =

x0, if t ∈ [0, Tx]

xss + (x0 − xss) · exp
(
−ζ̄x (t− Tx)

)
, if t > Tx.

(28)

We next study shocks to x ∈ {̄im,∆r, s̃} where ζ̄x > 0 controls the speed of reversion to

steady state. Under each experiment, we shock a variable and the Taylor rule coefficient η

to conveniently isolate the effect of the shock from the endogenous response of the Taylor

rule. The shocks in the experiment are summarized in Table 1. We use the calibration of

the model that we describe in the following section, assuming a constant common discount

factor.
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Effects of changes in the IOR and OMO. In a corridor system, the CB can move

im and ∆r. We associate changes in im to the interest-rate channel and changes in ∆r to

the credit channel. We first consider the effects of changes in im in which the CB performs

OMO to maintain ∆r fixed and s̃t = s̄. Figure 5 presents a transition after a temporary

reduction in im depicted in Panel (a). The solid lines show the responses corresponding

to this exercise. Due to nominal rigidities, the policy induces an identical decline in the

real savings and loan rates. Because production is demand determined, the reduction in

real rates provokes an output expansion and an immediate inflation response. In tandem,

an increase in marginal costs creates inflationary pressure. Increases in marginal costs are

necessary to induce the required hires and accommodate the greater demand. During the

transition, unemployment falls below its steady-state level. A virtue of the environment is

that the output response is hump-shaped even though the policy impulse is a step function.

Changes in the IOR carry real effects that resemble those in incomplete-market new-

Keynesian models, e.g. Kaplan et al. (2018); Auclert (2019). In those models, the effects of

changes in interest are produced by the direct effects that stimulate aggregate demand and

an indirect feedback effect via real wages that further stimulate demand. The real wage

also responds here as it is proportional to the marginal cost, mct. An indirect effect not

present in those models is the aggregate demand feedback to Γeu captured in the generalized

Euler equation. The increase in the job-finding rate amplifies the responses by reducing the

precautionary household behavior. Yet another feature is the countercyclical response of

credit induced by the decline in unemployment.24 Another virtue of the model is that the

countercyclical response of credit breaks the short-term relationship between the money

aggregate M1 and the price level.

A way to understand the quantitative effects of changes in the IOR is to consider the direct

impulse on aggregate demand. Because the distribution of consumption is a slow-moving

object, the direct impact on aggregate demand of changes in the IOR, Di
t, approximately

is:25

Di
t ≈ σ−1 × (imt − imss)× (1−G (u, s̄, ss))︸ ︷︷ ︸

interest-rate channel

. (29)

The expression captures how the change in the policy rate by (imt − imss) affects consumption

24The reduction in credit corresponds to a decline in deposits. If the CB does not conduct reverse OMO,
the stock of reserves would lead to a decline in Λ. The reduction in credit has ambiguous effects on the
CB’s profits, but the implied non-Ricardian effects are negligible.

25The expression is obtained by computing the change in aggregate demand from a change (imt − imss) in
interest rates.
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demand scaled by the mass of unconstrained agents, (1−G (u, s̄, ss)) and the intertemporal-

substitution coefficient. Indirect effects scale with the direct effects.

To understand the credit channel, we consider a reduction in ∆rt while keeping the IOR

constant.26 Panel (a) shows the path of spreads; the dashed lines show the responses

corresponding to this exercise. The reduction in the spread is produced by an OMO that

increases the liquidity ratio. Since both rates carry premia over the IOR that decrease with

the liquidity ratio, the deposit and savings rates fall. However, the reduction in the lending

rate is greater. The effects of these reductions in real rates enter the same way as reductions

in the IOR, but in different magnitudes between the borrowers and lenders, as dictated by

the Euler equation (23). The credit channel works only under a corridor system.

The direct effect of an OMO tailored to increase the spread by ∆rt −∆rss is:

D∆r
t ≈ σ−1

(� ∆rt

∆rss

∂iat /∂Lcb
t

∂∆r/∂Lcb
t

d∆r

)
× (1−G (u, s̄, ss))︸ ︷︷ ︸

credit channel (all unconstrained)

+ σ−1 (∆rt −∆rss)×

 ∑
z∈{e,u}

G (z, 0, ss)−G (u, s̄, ss)


︸ ︷︷ ︸

credit channel (unconstrained borrowers)

. (30)

In this case, the expression captures how the consumption demand of all unconstrained

agents, the fraction (1−G (u, s̄, ss)), responds to the change in the deposit rate, iat . The

change in iat results from how spreads impact the savings rate, which, from from Proposition

3, we know falls. This reduction in the nominal savings rate also stimulates the consump-

tion of unconstrained borrowers because the loan rate is the savings rate plus the spread.

Unconstrained borrowers,
(∑

z∈{e,u}G (z, 0, ss)−G (u, s̄, ss)
)
contribute an extra boost to

aggregate demand because the reduction in the spread impacts the loans rate in addition to

the effect on the deposit rate. The power to stabilize output by using the IOR and OMO

is proportional to Di
t and D∆r

t , respectively.

Effects of Credit Crunches. We now turn to a credit crunch; the dot-dashed lines

show the responses corresponding to this exercise. Starting from s̃ss = s̄, we study a

temporary decrease in s̃t also depicted in Panel (a). The immediate effect is a decline in

the consumption of households that become borrowing-constrained. Aggregating across

26In the exercise, an OMO is engineered so ∆rt is brought down to the DZLB during a year, T∆r, following
the logistic path. We isolate the effects from the endogenous response of the Taylor rule by setting η = 0
during the year of the response.
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them, the shock provokes a drop in aggregate demand, leading to an output decline and

an unemployment increase. Output falls because deflation does not offset the decline in

marginal costs.

For the credit crunch, the direct effect is:

Ds̃ ≈

 ∑
z∈{e,u}

� s̃t

s̄

[
ẇt (u)

wt (u)
− rat +∆r − ρ+ Γz′z

ss × J (u, s, ss)

σ

]
· g (u, s, ss) ds

 .
This direct effect measures the consumption drop of households that become borrowing

constrained, the unemployed with s ∈ [s̄, s̃t].

4. Normative Analysis

We now build the case for a countercyclical CB balance sheet by conducting a welfare

analysis. We adapt the model in two ways. First, we incorporate discount-factor shocks to

produce a skewed wealth distribution. Second, after we analyze macro-insurance, we let the

credit crunch be anticipated. With this extension, the household’s self-insurance behavior

is taken into account when evaluating their welfare gains.

Discount-factor Shocks and Ex-Ante Heterogeneity. Realistic employment flows

are insufficient to produce a meaningful wealth dispersion. While the spirit of this section

is to remain parsimonious by using a small number of parameters, we also want to the model

have a shot at reproducing the sufficient statistics that govern the macro insurance. From

Hubmer, Krusell and Jr. (2020), we know that discount factor shocks allow us to produce

much more dispersion in the wealth distribution. Thus, for this section, households have

a state-dependent discount factor ρ (x) where x ∈ {ℓ, h} and ρ (ℓ) < ρ (h) and transition

between states with Poisson intensity Γx′x.

Calibration. Next, we present a calibration of the model’s steady state to the US economy

summarized in Table 2. Rates are annualized. The supply side’s calibration is autonomous

while the demand side’s calibration depends on the supply side’s. Job flows: We calibrate

the matching job-destruction rate and the vacancy posting costs to produce realistic job

flows. We set the exogenous job separations to Γue = 0.8, following Weingarden (2020).27

27This figure only includes employer-induced separations and is, therefore, lower than measures that
include separations from job-to-job transitions that are not present in the model.
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We set the unemployment benefit, b, to 40% of real wages to reproduce the last decade’s

average replacement rate.28 The labor tax τ l is set to 0.3, the average labor income tax.29

We use a symmetric Cobb-Douglas matching function with unit efficiency. The job finding

rate depends on the ratio of the labor-share coefficient to the job posting cost, η/µ. We

set this ratio to 13.2 to obtain a steady-state unemployment rate of 5.4%, a figure close

to the average unemployment rate from 1948 to 2020 for expansion periods.30 While this

ratio is fixed, we take the limit as {η, µ} → 0 to eliminate intermediate firm profits. The

elasticity of substitution across goods, ε, is set to induce a 10% retail-sector markup. We

set the price-adjustment cost Θ to induce a slope of the Phillips curve equal to 35 which is

the estimate in Schaab (2020).

While the labor flows determine the household’s income process, their preferences and their

debt constraints determine the wealth distribution. Preferences: We set the power-utility

coefficient γ to 2, a standard value. We assume symmetry in the transition rates between

discount-factor states, Γℓh = Γhℓ = 1/20. The rate is chosen so that switches on average

occur every 20 years, to mimic life-cycle patterns (Hubmer et al., 2020, as in). We set{
ρℓ, ρh

}
to target a real savings rate of 2.4% and to produce sufficient statistics for the

right skew tail of the wealth distribution. We set the debt limit to s̄ = −w (u) so that the

debt-to-annual-income is one among the unemployed. In the baseline calibration s̃ = s̄.

MP parameters: The IOR implements a zero inflation target. The coefficient of the Taylor

rule is set to 1.5. For the benchmark calibration, we target a zero credit spread. In the

exercises, we move spreads by conducting OMO, and for that, we must also calibrate the

banking block. We set the interbank-market market parameters following Bianchi and Bigio

(2022).31

In choosing the debt limit s̄ and the ratio ρ (ℓ) /ρ (h) we strike a balance between different

moments. For the debt limit s̄, we balance the debt-constrained population which in the

model is 0.25% with the the population with debt, which is close to 58%. For ρ (ℓ) /ρ (h),

we balance the held wealth and the Pareto Tail of the top wealth decile, 50% and 3.1 respec-

28The UI replacement rate is the ratio of the claimants’ weekly benefit amount (WBA) to the claimants’
average weekly wage. The average weekly wage is based on the hourly wage of a usual job claim, normalized
to a 40-hour work week. The data is from https://oui.doleta.gov/unemploy/ui replacement rates.asp.

29The average labor income tax is equal to the U.S. average tax wedge for a single worker from 2000 to
2019. The data is from the OECD’s database https://data.oecd.org/tax/tax-wedge.htm.

30The interpretation of this ratio η/µ is a 6% recruiting relative to firm profits. With these targets, the
hiring rate adjusts accordingly.

31We set the payment shock δ to produce the same steady-state interbank market tightness as in that
paper, λ, to 2.1. The penalty ι is 10% to account for missing elements such as collateral and stigma
(De Fiore, Hoerova and Uhlig, 2018). The implied CB operational revenue over output is 0.15% of GDP,
close to the operating profits of the Federal Reserve.

30



tively. As we explain below, macro-insurance critically depends on the mass of constrained

agents and the skewness of the wealth distribution. Regarding the debt-constrained house-

holds, there is less mass than in Kaplan et al. (2018). Also, there is less debt in the lower

wealth quantiles, but we view this as reasonable because the model lacks housing, collat-

eralized debt or other sources of social insurance. The model further abstracts away from

other important features such as illiquid assets (Kaplan et al., 2018, as in), consumption

commitments (Chetty and Szeidl, 2007, as in), entrepreneurial activities, capital, life-cycle,

health risks, etc. While these features are important, the goal is only to provide a sense

of the importance of macro-insurance by reproducing the sufficient statistics that govern it

with a minimal set of assumptions.

Parameters

Value Description Reference

γ 2 risk aversion standard calibration

ρℓ 0.0175 low discount real-interest rate / Pareto Tail

ρh 0.0375 high discount real-interest rate / Pareto Tail / 4th quantile

Γℓh,Γhℓ 0.05 discount-factor shock life-cycle approximation

Γue 1.2 job separation rate Weingarden (2020)

ε 10 CES coefficient average markup

Θ 350 Phillips curve coefficient of 35 Schaab (2020)

b 0.41 replacement rate standard calibration

η/µ 13.5 profit share/vacancy cost 5.4 unemployment rate

τ l 0.3 labor tax rate budget balance

∆rss 0% steady-state credit spread benchmark

s̄ −1.0w (u) credit limit Indebted and debt-constraint pops.

Table 2: Parameter Values

Note: The table lists the calibrated values of parameters and the corresponding reference/target of calibration.

Macro Insurance and its Sources. We now analyze the macro insurance properties of

different CB balance sheets. As emphasized above, expansions in the CB balance sheet are

irrelevant under satiation or liquidity-trap regimes. Moreover, reductions in the IOR are
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contractionary once MP hits the DZLB. Because MP has these limits, it is important to

understand how the CB’s balance sheet enhances the power of these tools (the stabilization

power) and mitigates the effects of a credit crunch (the macro-prudential effect).

To showcase the macro-insurance role of balance-sheet policies, we discuss how the effects

of MP tools and the credit crunch shock, quantitatively change with the initial steady-

state spreads induced by different CB balance sheets. Figure 6 displays the output response

induced by (a) a reduction in the IOR all the way to the DZLB, (b) the same reduction in the

IOR together with an OMO that takes the spread to zero, and, finally, (c) during a credit

crunch absent a policy response—respectively depicted in Panels (a), (b), and (c). The

different output responses correspond to different steady-state values of ∆r. The takeaway

is that the higher the initial spread, the greater the macro insurance across all margins:

Indeed, Panels (a-b) show that a wider spread increases the stabilization power of MP

tools. In this exercise, higher spreads increase the power of MP primarily by strengthening

the credit channel, Panel (b). In turn, Panel (c) demonstrates the macro-prudential benefit:

the output decline after a credit crunch is mitigated with a higher spread.

(a) Reductions in the IOR (TBA) (b) Reductions in the IOR and Spreads (c) Effects of a Credit Crunch

Figure 6: Policy and Credit Crunch for Different Spreads.

Note: The figure reports the responses of aggregate output after an unanticipated reduction in IOR, an unanticipated reduction
in IOR and spread, and an unanticipated credit crunch. Aggregate output is expressed in percentage deviations from the steady
state. In each panel we simulate the paths under four different steady-state spreads: ∆rss = {0.05%, 0.5%, 1%}.

Why does the CB balance sheet enhance macro insurance? We summarize the mechanisms

through the flow chart in Figure 7 and discuss the sources of greater macro insurance

analytically. The most expansionary MP response possible occurs when ∆r = imt = 0, the

policy studied in Panel (b). We can compute how the change in the sum of the direct effects

of changes in the IOR and spreads, change with ∆r. Taking derivatives to (29) and (30)
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and adding both direct effects, we re-arrange terms to obtain:

∂D∆r
t

∂∆rss
+

∂Di
t

∂∆rss
≈ −σ−1

rlss
 ∑

z∈{e,u}

∂G (z, 0, ss)

∂∆rss
− ∂G (u, s̄, ss)

∂∆rss


︸ ︷︷ ︸

enhanced loan-rate sensitivity

− rass

 ∑
z∈{e,u}

∂G (z, 0, ss)

∂∆rss


︸ ︷︷ ︸
enhanced saving-rate sensitivity

+
∂rlss
∂∆rss

 ∑
z∈{e,u}

G (z, 0, ss)−G (u, s̄, ss)


︸ ︷︷ ︸

loan-rate scale

+
∂rass
∂∆rss

1−
∑

z∈{e,u}

G (z, 0, ss)


︸ ︷︷ ︸

saving-rate scale

 . (31)

The decomposition reveals the sources of macro insurance: Recall that more negative direct

effects reflect a greater expansionary MP shock. Thus, the scale of the expansionary effect

is modulated by −σ−1. Equation (31) presents four terms: the first two terms capture the

change in the spread changes the steady-state expenditure distribution, thereby changing

the aggregate sensitivity to interest rates. The first term corresponds to the change in the

mass of interest rate sensitive borrowers,
∑

z∈{e,u}
∂G(z,0,ss)
∂∆rss

− G(u,s̄,ss)
∂∆rss

, times the interest on

loans. The second term subtracts the change in the mass switching from a borrower to a

lender status times the deposit rate.

The third and fourth terms capture a scale effect. The scale effect captures that if the loan

and deposit rates start off at higher levels, the demand stimulus will be greater once both

rates are taken all the way to zero in the future. That is, the higher the starting point,

the greater the demand stimulus. The scale effects are weighted by the population masses

sensitive to the corresponding rates. While the scale effect of the loan rate is positive, the

scale effect of the savings rate is negative.

This decomposition showcases the features that contribute to greater macro insurance.

First, the mass of debt-constrained households must fall substantially with the spread,
∂G(u,s̄,ss)

∂∆rss
< 0. In fact, the terms in

∂Di
t

∂∆rss
only appear in the first two terms. Hence, impacting
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the mass of debt-constrained agents is key to enhancing the direct effect of the interest-rate

channel. Second, the mass of debt-constrained households must fall substantially with the

spread, ∂G(u,s̄,ss)
∂∆rss

< 0. In the calibration, the mass of hand-to-mouth agents is small to

start with, leaving little room to move the mass of debt-constrained households, and the

population with debt does not change substantially, which is why the responses in Panel

(a) are alike for different initial spreads. Of course, the increase in the stabilization power

induced by greater spreads increases in alternative calibrations where the wealth distribution

is much more sensitive to the spread.

From the decomposition, we can also conclude that to enhance the credit and interest-rate

channels with small balance sheets, an economy must feature substantial right skewness

of the wealth distribution and must produce a difference in the incidence of the spread

on the loans and deposit rates. To see this, assume that the mass of debt-constrained

households is zero. If the wealth distribution is insensitive to the spread, the interest-rate

sensitivity is not enhanced; the first two terms cancel. In particular, enhancing the interest-

rate channel requires that the fraction of the population in debt and debt constrained to

be large to begin with. If furthermore, the incidence of the spread on the lending rate and

the borrowing rate is the same, ∂rlss
∂∆rss

= − ∂rass
∂∆rss

, and
∑

z∈{e,u}G (z, 0, ss) ≈ 1/2, the scale

effects cancel out. In other words, leaving more room to reduce the loan rate in the future

cancels with the effect of leaving less room to lower the deposit rate if the distribution is

symmetric. The decomposition shows that an asymmetry in the incidence of the spread on

the loan and deposit rate and a right-tailed wealth distribution are key to strengthening the

credit channel. Large differences in interest-rate elasticities result from strong precautionary

behavior.

In the current calibration, CB balance sheets strengthen the credit channel but not the

interest rate channel as is evident from Panels (a) and (b). While the masses of households

in debt and debt constraints do not vary substantially with the initial spread, indicating

that the enhanced sensitivity effects are small, the scale effects do vary significantly higher

spreads.

Finally, the macro-prudential effect of CB balance sheets is captured by:

∂Ds̃
t

∂∆rss
≈

∑
z∈{e,u}

� s̃t

s̄

[
ẇt (u)

wt (u)
− rlt − ρ+ Γz′z

ss × J (u, s, ss)

σ

]
· ∂g (u, s, ss)

∂∆rss
ds

−σ−1 ∂rlt
∂∆rss

G (u, s̃, ss) .

The source of greater macro-insurance stems from the change in the mass of agents impacted
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Figure 7: Flow Diagram of Forces in the Model.

by the shock.

So far, we have established that higher spreads enhance the stabilization power of MP

and have macro-prudential benefits. In the calibrated version, a stronger credit channel

and a weaker effect of credit crunch shocks bring about greater macro economic insurance.

However, earlier, we also noted that spreads induce worse micro insurance. Hence, there is

a trade-off between better macro insurance and worse micro insurance, which we investigate

next through a welfare analysis.

Risky Steady State Welfare. Letting households anticipate an aggregate shock is key

to analyzing their welfare. If households do not anticipate the aggregate shock, we cannot

establish whether macro insurance is necessary because households will self-insure against

the shock. However, letting households anticipate an aggregate shock leads to a common

technical challenge: in models where the wealth distribution is a state variable, computing

exact solutions is unfeasible. For that reason, the literature often deviates from rational

expectations equilibria and studies models where households use approximate models to

make forecasts. Here, we want to study different ex-ante CB balance sheets that affect

ex-post stabilization. Because we want to compare across ex-ante policies, and model

35



approximations can also differ as we vary the ex-ante policies, we favor an approach where

we can compute exact rational expectations equilibria, albeit sacrificing statistical realism.

In this section, we compute the exact model solution when the credit crunch is anticipated,

but the credit crunch is a single-shock event. That is, we employ the risky steady-state

(RSS) approach of Coeurdacier, Rey and Winant (2011) used to understand the anticipa-

tion of risk in representative agent environments. In our context, the RSS is the asymptotic

limit of the economy where the credit crunch is expected but has not yet occurred. After

the realization of the shock, the transition is deterministic that takes the RSS wealth dis-

tribution as an initial condition. Although a single-shock event is a restrictive assumption,

it is an approximation to the case of recurrent rare “disaster" events.32 Moreover, the RSS

does not add further complexity to the analysis nor to the computation, as we discuss in

Appendix G.33

The RSS with idiosyncratic discount shocks is characterized as follows. Given a Poisson

arrival rate for a credit crunch, Φ, and a real spread, ∆rrss, the RSS is characterized by a

modified household HJB equation and a wealth distribution:

Definition 2 [RSS] A RSS is an equilibrium with the following modified conditions:

a) the solution to the household’s value and policy functions at the RSS are the solutions

to:

ρ (x) Ṽ (x, z, s) = max
{c}

U (c) + Ṽ ′
s · µ̃ (z, s) + Γz′z

rss

[
Ṽ (x, z′, s)− Ṽ (x, z, s)

]
(32)

+ Γx′x
[
Ṽ (x′, z, s)− Ṽ (x, z, s)

]
+ Φ

[
V0 (x, z, s)− Ṽ (x, z, s)

]
,

and ṡ ≥ 0 at s = s̄ where µ̃ (z, s) ≡ rrsss− c+ wrss (z) + Trss, x ∈ {ℓ, h}, z ∈ {e, u}.

b) after the credit-crunch shock households solve the problem without shocks:

ρ (x)Vt (x, z, s) = max
{c}

U (c) + V ′
s · µt (x, z, s) + Γz′z

t [Vt (x, z
′, s)− V (x, z, s)] (33)

+ Γx′x [Vt (x
′, z, s)− Vt (x, z, s)] + V̇ ,

32Disasters are large infrequent shocks, see Barro and Ursúa (2012). Hence, it is reasonable to disregard
the effect of a second shock on agent behavior. We conjecture that for sufficiently high discounting and
far apart events, the deterministic behavior after the single shock can approximate well the behavior under
recurrent shocks—akin to the Turnpike Theorem.

33The main challenge is that the distribution of wealth at the start of the crunch, is unknown. However,
we no longer need to solve for a fixed point in the space of distributions, but only in the space of functions—
the problem is of equal computational complexity as a perfect-foresight transition. To see this, observe that
to solve (32), all we need to obtain is a RSS value for the real rate, rrss. With rrss, we obtain consumption
rules that solve (32), and from these, we obtain f̃rss according to an analog of (9). Then, f̃rss is the initial
condition for a transition that converges to a steady state.
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subject to the same constraints as the original problem, x ∈ {ℓ, h}, z ∈ {e, u}.
c) the RSS distribution of wealth and employment status, f̃rss, is given by the analog KFE

in (9).

d) After the shock, the equilibrium is computed as a deterministic economy with f̃rss as an

initial condition.

e) Given a spread target, ∆r, a real deposit rate ra that solves (18) and Trss is given by

(17)—using the distribution f̃ .

Notice that the HBJ equation (32) is identical to a steady-state HJB, but one where with

intensity Φ, values jump to the time-zero value of the HJB equation (33). In turn, the

KFE of the RSS is analog to (9), taking RSS distribution, f̃rss as an initial condition after

the shock. We use this equilibrium concept to compute the utility gains associated with

different balance sheet policies.

(a) z, x = {e, h} (b) z, x = {u, h}

(c) z, x = {e, ℓ} (d) z, x = {u, ℓ}

Figure 8: RSS Change in Values from increases in spreads

Note: This figure reports the differences βrss (x, z, s, 0)−βrss (x, z, s, 0.1). The welfare loss is measured in % deviation
of aggregate CE from steady-state output.

Ex-ante CB balance sheets impact the welfare of households depending on their charac-

teristics. Because solving for an optimal RSS spread escapes the scope of this paper, here

we only compare the individual welfare of increasing spreads from zero to a positive num-

ber for households, as a function of their state. These calculations give us a sense of the
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trade off that a policymaker should confront when designing optimal policies. To compare

the individual welfare gains associated with different balance sheet policies, we compute

different RSS associated with different initials spreads ∆r. Each RSS yields a value func-

tion Vrss (x, z, s; ∆r) for each household. We translate the value of each household into

a risk-free annuity (in terms of deviations from the steady-state output) by solving for

βrss (x, z, s,∆rss):

U (Yss (1− βrss (x, z, s,∆rss))) = ρ (x)Vrss (x, z, s; ∆r) .

Using this welfare metric, we can compare the steady-state welfare gains/losses from raising

spreads for different households. Figure 8 plots four panels, each associated with one of the

households {x, z} ∈ {h, ℓ} × {e, u}. For each level of savings (shown in terms of annual

GDP), the figure reports the change in βrss starting from a spread of zero to a spread of 0.1.

That is, we plot ∆βrss (x, z, s) ≡ βrss (x, z, s, 0)−βrss (x, z, s, 0.1). This small change in the

welfare metric gives us a sense of the rate of change of the welfare of different households

for a small increase in the spread. We report ∆βrss (x, z, s) for two intensity levels of the

aggregate shocks, Φ. A positive value of ∆βrss indicates welfare gains from the spread

increase.

Several takeaways emerge from Figure 8. These takeaways reveal the trade-offs involved in

the design of optimal balance sheet policies. First, an increase in the spread is detrimen-

tal for households at the extremes of the wealth distribution, regardless of {x, z}. Indeed,

spreads lower the savings rate and increase the loans rate, hurting agents at the extremes.

This feature reflects worse micro-insurance. By contrast, middle-class benefits from a higher

spread. Their welfare gains stem from the greater macro-insurance and the fiscal rebates,

which that more than compensate for the spreads they may confront in the future. Com-

paring across employment status, we find that the unemployed need more savings to benefit

from a higher spread. This is because the unemployed expect to continue depleting their

savings so the higher loan rate impacts the unemployed more. However, for moderate wealth

levels, the unemployed gain because macro-insurance stabilizes output through the hiring

rate. Comparing across different shock intensities, higher spreads increase welfare with the

intensity of the shock. If we compare high with low-discount households, we find that pa-

tient agents experiences greater gains on average. This is because patient agents value more

the future benefits from greater macro-insurance—recall that in the RSS, the credit crunch

happens in the future so the macro-insurance benefit is discounted.

While this takeaways do not tell us what is the ideal optimal spread, they point toward the

trade-offs that a policy maker should confront.
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5. Conclusion

The paper shows how the supply of reserves and the IOR affect credit, interest rates,

inflation, and output in an economy with credit market frictions, nominal rigidities, and

aggregate demand externalities. The model highlights the importance of CB balance sheet

policies in shaping the economy’s responses to policy and aggregate shocks. The paper

identifies three different regimes in which MP can operate, depending on the level of reserves

in the banking system, and discusses the implications of each regime for macroeconomic

outcomes. Overall, the paper provides insights into the ideal management of the CB balance

sheet and how it can be used to promote macroeconomic stability.

The paper’s message is presented in the context of a credit crunch, but aggregate discount

factor shocks can also be a source of aggregate demand shocks—see Eggertsson and Krug-

man (2012). Discount factor shocks can capture deeper phenomena like sectoral shocks

such as those of the Covid-19 crisis—–see (Guerrieri, Lorenzoni, Straub and Werning, 2022;

Bigio, Zhang and Zilberman, 2020). Earlier versions of this paper presented a similar anal-

ysis in the context of aggregate discount factor shocks, and the message remains the same:

limiting credit is desirable to save monetary policy for the future. We expect similar benefits

to be present in models with more interesting financial intermediaries. In either version, we

would like to use this framework to solve for optimal CB balance sheets in the future.
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A. List of Acronyms and Accounting Identities

List of Acronyms in the Paper. Along the paper we used the following acronyms:

� MP: Monetary Policy

� CB: Central Bank

� DZLB: Deposit Zero Lower Bound

� IOR: Interest on Reserves

� OMO: Open-Market Operation

Household Balance Sheet. The household’s balance sheet in in nominal terms is structured as:

Assets Liabilities

mh
t lht

aht Ptst

.

Bank Balance Sheet. The balance sheet of an individual bank is structured as:

Assets Liabilities

mb
t abt

lbt

.

CB Balance Sheet. The balance sheet of the CB is structured as:

Assets Liabilities

Lf
t Mt

Monetary Aggregates. The monetary aggregates are given by,Mt, the monetary base,M0t, the currency

and M1t ≡ Ab
t +M0t, the highest monetary aggregate.

Money Multiplier. The money multiplier MMt is the inverse of the liquidity ratio, MMt = Λ−1
t =

Ab
t/ (Mt −M0t).

Timeline of interbank transactions. Figure 9 presents the accounting for banks, within a ∆ time

interval. Unlucky banks get hit by negative withdrawal shocks, which can lead them to a negative balance

of reserves in the period. That bank must cover the position by the end of the interval by borrowing funds

from other banks, or from the discount window.
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B. Formulas for the Interbank-Market Payments

We adopt the formulation in Bianchi and Bigio (2017) that renders analytic expressions. The interbank

market works as follows: The market operates in a sequence of n trading rounds. Given the initial positions{
B−

0 , B
+
0

}
≡ {B−, B+}, surplus and deficit positions are matched randomly. When a match is formed

between two banks, they agree on an interbank market rate for the transaction. The remaining surplus and

deficit positions define a new balance,
{
B−

1 , B
+
1

}
. New matches are formed, and a new interbank market

rate emerges. The process is repeated n times, defining a sequence
{
B−

j , B
+
j

}
j∈1:n

until a final round is

reached. Whatever deficit remains is then borrowed from the CB at a cost given by ι.

The interbank market rate of a given trading round is determined by a bargaining problem in which banks

take into consideration the matching probabilities and trading terms of future rounds. This produces an

endogenous average interbank rate, i
f
. Given trading probabilities, the policy rates and the average rate

i
f
, the average rates earned on negative and positive positions are respectively:

χ− = ψ−
(
i
f − im

)
+ (1− ψ−) · ι, and χ+ = ψ+

(
i
f − im

)
.

Banks take into account these costs and benefits when forming their portfolios. To express {χ−, χ+},
Bianchi and Bigio (2017) assume that matches are formed on a per-position basis and according to a

Leontief matching technology, λ
n min

{
B−

j , B
+
j

}
, where λ captures the trading efficiency. Let θ = B−/B+

define an initial interbank “market tightness.” If θ ≤ 1, in the limit n → ∞, trading probabilities across

all trading rounds, {ψ+, ψ−}, converge to ψ+ (θ) = θ (1− exp (−λ)) and ψ− (θ) = 1 − exp (−λ), two

expressions consistent with market clearing. With equal bargaining power, the average interbank market

rate i
f
solves

i
f
(θ, im)− im = ι ·

(
(θ + (1− θ) exp (λ))

1/2 − 1
)

(1− θ) (exp (λ)− 1)
. (34)

Bianchi and Bigio (2017) show that iwth a Leontief matching function, the trading probabilities for surpluses

and deficit positions along a trading session are:

ψ+ (θ) ≡ θ
(
1− e−λ

)
, ψ− (θ) ≡ 1− e−λ.

In turn, the expected interbank payments that follow from the sequence of bargaining problems at different

trading rounds are given by:

χ− (θ, η) = ι
(θ + (1− θ) exp (λ)) 1−η − θ

(1− θ) exp (λ)
,

and

χ+ (θ, η) = ι
θ (θ + (1− θ) exp (λ)) 1−η − θ

(1− θ) exp (λ)
.
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The resulting average interbank market rate is:

i
f
(θ, η) ≡ im + ι

(θ + (1− θ) exp (λ)) 1−η − 1

1− exp (λ)
. (35)

In the paper we set η = 1/2.
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C. Markets

Clearing in intermediate goods requires:

� 1

0

xjtdj = xt.

The aggregate currency stock is:

M0t ≡
∑

z∈{u,e}

� ∞

s̄

mh
t (z, s) f (z, s, t) ds.

The supply of money is the sum of reserves and currency. Thus the money market clears when:

M0t +M b
t =Mt. (36)

The credit market has two sides: deposit and loan markets. The deposit and loans market clear when:

Ab
t =

∑
z∈{u,e}

� ∞

0

aht (z, s) f (z, s, t) ds, a and Lb
t + Lcb

t =
∑

z∈{u,e}

� 0

s̄

lht (z, s) f (z, s, t) ds. (37)

Finally, the goods market clears when:

Yt = Ct ≡
∑

z∈{u,e}

� ∞

s̄

ct (z, s) f (s, t) ds. (38)

The corresponding labor-clearing conditions are given by the labor flow equations.
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Appendix II: Main Proofs
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D. Proofs

D.1 Proof of Proposition 1

Preliminary Steps. We are interested in solutions that satisfy {l,m, a} > 0. An individual bank

takes {χ+, χ−, θ} and the interest rates
{
ia, il

}
as given. Consider the bank’s problem:

πb = max
{l,m,a}∈R3

+

(
il · l + im ·m− ia · a+ E [χ (b; θ, ι)]

)
subject to the budget constraint l +m = a and the law of motion for reserve balances at the CB:

b (a,m) =


m with probability 1/2

m− δ · a with probability 1/2

.

The objective is homogeneous of degree 1. Hence, profits should be zero, otherwise the solution is unbounded

or zero. Although the solution is unbounded, we can determine the equilibrium portfolio shares consistent

with given rates. We also know that the objective is piece-wise linear. Thus, it can be transformed into a

linear program. However, here we characterize the solution through the principle of optimality.

To obtain a solution, we substitute out l from the budget constraint to obtain a modified problem:

π (m, a) ≡ max
{m,a}

((
im − il

)
·m+

(
il − ia

)
· a+ 1

2
χ+m+

1

2

(
χ+ · I[ma >δ] + χ− · I[ma ≤δ]

)(
m− δ

2
a

))
,

subject to a ≥ 0 and m ∈ [0, a]. In a solution with a > 0, we can factor deposits and write the objective as:

π (m, a) ≡ max
a∈R++

a ·
[(
il − ia

)
+ ϑ

]
where

ϑ ≡ max
µ∈[0,1]

[
−δ
2

(
χ− · I[µ≤δ] + χ+ · I[ma >δ]

)
+

((
im − il

)
+

1

2
χ+ +

1

2

(
χ+ · I[µ>δ] + χ− · I[µ≤δ]

))
µ

]
.

and we recover m = µ · a. We further write ϑ as:

ϑ ≡ max
{
ϑscarcity, ϑsatiation

}
,

where

ϑscarcity ≡ sup
µ∈[0,δ)

−δ
2
χ− +

((
im − il

)
+

1

2

(
χ+ + χ−))µ

and

ϑsatiation = max
µ∈[δ,1]

−δ
2
χ+ +

((
im − il

)
+ χ+

)
µ.
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Thus, we break ϑ into two sub-problems, one corresponding to the case where the bank has enough reserves

to meet the withdrawal shock and always end with a positive balance (satiation) and another where the

bank ends with a reserve deficit if it faces a shock (scarcity).

We have three possible cases depending on the three possible signs of
(
im − il

)
+ 1

2χ
+. We describe each

of these cases next.

Case 1 (not an equilibrium). If
(
im − il

)
+ 1

2χ
+ > 0, we argue that this condition cannot occur

in equilibrium. In this case, the solution to ϑsatiation is to set µ as large as possible. Thus, ϑsatiation =(
im − il

)
+
(
1− δ

2

)
χ+ with µ = 1. Since χ− ≥ χ+, the solution to ϑscarcity is also to set µ as large as

possible, which then yields: ϑscarcity = − δ
2χ

− +
((
im − il

)
+ 1

2 (χ
+ + χ−)

)
δ =

(
im − il

)
+ δ

2χ
+. Note that

ϑsatiation − ϑscarcity = χ+

(
1− δ

2

)
− δ

2
χ+ = (1− δ)χ+ > 0,

where the inequality follows form δ < 1.

Thus, under the stated case, it is optimal for the bank to be satiated. Therefore, the solution to the bank’s

problem is to set, ϑ = ϑsatiation with µ = 1. However, since µ = 1, this implies that a = m. This cannot

occur in an equilibrium with positive loans. Hence, in equilibrium,
(
im − il

)
+χ+ ≤ 0, two cases we evaluate

next.

Case 2 (equilibrium with satiation). Assume that
(
im − il

)
+ χ+ = 0. Then, ϑsatiation =

− δ
2χ

+ ≤ 0 for any µ ∈ [δ, 1]. Also, because
(
im − il

)
+χ+ = 0, the value of holding a portfolio with reserves

scarcity is:

ϑscarcity ≡ sup
µ∈[0,δ)

−δ
2
χ− +

1

2
χ−µ.

The objective is increasing in µ, and thus, ϑscarcity = 0 with a solution µ → δ. Hence, ϑ = ϑscarcity ≥
ϑsatiation.

We now consider the aggregate conditions, setting Λ = µ. Since for any µ = Λ ≥ δ, we have that θ = 0, we

verify that in any case χ+ = 0. Thus, ϑscarcity = ϑsatiation = 0, and any [δ, 1] is a solution.Thus, from the

stated condition we obtain that:

(
im − il

)
+ χ+ = 0 → χ+ = 0, im = il.

We now turn to the deposit rate. Given that ϑ = 0, and that π = 0 is an equilibrium condition for any a,

it must be that

im = ia.

Thus, if µ ≥ δ, all banks are satiated and all nominal rates are equal:

im = ia = il. (39)

This case corresponds to the solution under satiation where Λ ≥ δ.
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Case 3 (knife-edge and scarcity equilibria). Finally, assume that
(
im − il

)
+ χ+ < 0. In

this case, the solution to ϑsatiation is attained when µ = δ. Thus,

ϑsatiation =

(
im − il +

1

2
χ+

)
δ < 0.

Now, let’s consider the value of ϑscarcity.

Again, we have to separate the analysis case into three possible cases depending now on the sign of
(
im − il

)
+

1
2 (χ

+ + χ−). We do so in the following steps:

Case 3.a (not an equilibrium). Assume that
(
im − il

)
+χ+ < 0 and, in addition, that im − il +

1
2 (χ

+ + χ−) < 0. Then, the solution to ϑscarcity = − δ
2χ

−, which is obtained when µ = 0. Therefore,

ϑscarcity − ϑsatiation = −
(
im − il +

1

2

(
χ+ + χ−)) δ > 0.

The inequality follows by hypothesis. Thus, the bank would chose to remain with a reserve scarcity and

set µ = 0. However, this solution implies that m = 0. Hence, the case cannot occur with positive reserve

holdings.

We furthermore know that:

(
il − im

)
∈
[
χ+,

1

2

(
χ+ + χ−)] ,

because neither case 3.a nor case 1 can occur in equilibrium.

Case 3.b (knife edge case). Assume that
(
im − il

)
+χ+ < 0 andim− il+ 1

2 (χ
+ + χ−) > 0. Then,

the solution to ϑscarcity =
(
im − il + 1

2χ
+
)
δ obtained limµ → δ. Thus, ϑscarcity = ϑsatiation and hence,

the solution to ϑ requires µ = δ . Since for µ = δ, we have that χ+ = 0 then ϑ = −
(
im − il

)
δ > 0. Thus,

im < il.

From the condition that requires banks ear zero profits, we obtain:

il − ia =
(
il − im

)
δ.

Thus, clearing this condition we obtain:

∆r ≡ il − ia = (ia − im)
δ

1− δ
.

We re-write the solution to ia as:

ia = im +∆r (1− δ) /δ. (40)
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Then, from
(
im − il

)
+ 1

2χ
− (0) > 0 we obtain that

im +
1

2
χ− (0) > il = ia + ∆̇r → 1

2
χ− (0) >

ia − im

1− δ
=

∆r

δ
.

Thus, in the point where Λ = δ, we have that the spread is given by:

∆r ∈
[
0,
δ

2
χ− (0)

]
. (41)

We arrive at the final case next.

Case 3.c (scarcity solutions). Assume that
(
im − il

)
+ χ+ < 0 and in addition im − il +

1
2 (χ

+ + χ−) = 0. Then, the solution to ϑscarcity = − 1
2χ

+δ obtained by any µ ∈ [0, δ]. Thus,

ϑsatiation − ϑscarcity =

(
im − il +

1

2
χ+ +

1

2
χ−
)
δ = 0,

where the equality follows by hypothesis. Thus, the bank is indifferent between level of reserves from

µ ∈ [0, δ]. Therefore, in this case we have that:

il = im +
1

2

(
χ+ + χ−) . (42)

From the condition that requires π = 0, we obtain:

(
il − ia

)
+ ϑ = 0 →

(
il − ia

)
=
δ

2
χ−

and, thus, we obtain:

ia = im +
1

2

(
χ+ + χ−)− δ

2
χ−. (43)

Summary. Thus, taken together, we know that

{
il, ia

}
∈
[
im, im +

1

2

(
χ+ + χ−)]

If an equilibrium features scarcity of reserves, it must fall in case 3.c and satisfy (42) and (43), as stated in

the proposition. If the satiation is strict in the sense that Λ > δ, then we are in case 2, and the solution is

given by (39). Finally, a knife edge case occurs when Λ = δ the satiation is weak in the sense that Λ = δ.

In this case, there’s a range of values as given by Case 3.b. and equations (41) and (40). QED.

D.2 Proof of Proposition 3

We now derive the effects of policy instruments,
{
Lf
t , i

m
t

}
∈ R+×R, on the interest rates and the quantity

of currency. Recall that {Pt} and {ft} , are pre-determined. Thus, we focus on the instantaneous impact

of policies, holding fixed prices and wealth. Since effects are static, for the rest of the proof we avoid time

subscripts.
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Equilibrium conditions. Recall that from Proposition 1, that we have the following subsystem of

equilibrium conditions:

il = im +
1

2

(
χ+ (θ) + χ− (θ)

)
(44)

and

ia = im +
1

2

(
χ+ (θ) + (1− δ)χ− (θ)

)
≥ 0. (45)

In turn, the spread is given by:

∆r =
δ

2
χ− (θ) . (46)

Also, note that

θ (Λ) ≡ max

{
δ

Λ
− 1, 0

}
, (47)

with derivative θΛ (Λ) = − δ
Λ2 < 0.

The liquidity ratio of banks, considering the monetary base and currency holdings, is given by:

Λ =
M/P

D/P
=

M/P −M0/P∑
z∈{u,e}

�∞
0
sf (z, s, t) ds−M0/P

=
Lf −M0/P∑

z∈{u,e}
�∞
0
sf (z, s, t) ds−M0/P

. (48)

The second equality is obtained by replacing the money-market clearing condition and the deposit-market

clearing condition, and then, by replacing the CB balance sheet. Given Λ, the market tightness is given by:

θ (Λ) = δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds−M0/P

Lf −M0/P

)
− 1. (49)

From the household’s problem, we also have that

M0 ≥ 0 with strict equality if ia > im. (50)

Equations (44-50), represent a subsystem of equilibrium conditions.

Organizing results into Policy Regimes. We study the effects of policy changes in three

possible regimes, defined as follows:

� We say that MP is in a Corridor Regime if
{
Lf , im

}
is such that ia > im and M0 = 0.

� We say that MP is in a Satiation Regime if
{
Lf , im

}
is such that ia = im > 0.

� We say that MP is in a Liquidity Trap if
{
Lf , im

}
is such that ia = 0 > im and M0 > 0.
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These regions do not overlap and cover the space of policies
{
Lf , im

}
∈ R+ × R: By definition, the

parameters corridor and satiation regimes do not overlap because ia > im and ia = im cannot occur together

and ˙χ+ (θ) + (1− δ)χ− (θ) is a monotone function in θ, thus separating the space in Λ. By definition, a

liquidity trap occurs if
{
Lf , im

}
induce either (a) ia = 0 > im and M0 > 0 or (b) ia = im = 0 and M0 ≥ 0.

We consider the policy effects at the strict interior of these regions. At the boundaries, the system is not

differentiable. It is convenient to define the money multiplier as the inverse of the liquidity ratio:

µ ≡
∑

z∈{u,e}
�∞
0
sf (z, s, t) ds

Lf
.

Case 1 (im > 0). Assume that im > 0. Then, because ia ≥ im > 0, it must be that M0 = 0 for

any Lf . Note that since M0 = 0, combining the CB budget constraint, (15), the money-market clearing

condition, (36), and the bank’s budget constraint, we obtain that:

dLf = dM = dMb = −dLb, dMh = 0.

Because Mh = 0, we obtain that (49) is:

Λ =
Lf∑

z∈{u,e}
�∞
0
sf (z, s, t) ds

.

By Proposition 1, we know that if Λ < δ then, banks must face a reserve scarcity and thus, an equilibrium

must feature:

il > ia > im.

We have reserve scarcity only when:

Lf < δ

� ∞

0

sf (s, t) ds.

We now consider the effects of policy variables when there is scarcity and when there isn’t.

Case 1.a (im > 0 and Λ < δ). We now consider the policy effects of changes in Lf
t and imt when

im ≥ 0 and Lf < δ
�∞
0
sf (s, t) ds.

Let’s consider first the effects of changes in imt . Taking the differential with respect to im in (42) and (43)

we obtain:

∂il

∂im
= 1,

∂ia

∂im
= 1,

∂∆r

∂im
= 0.

Now, let’s consider the differential with respect to Lf . Using (43) we obtain:

dia =
1

2

(
χ+
θ (θ) + (1− δ)χ−

θ (θ)
) ∂θ
∂Λ

∂Λ

∂Lf
dLf .
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Substituting derivatives yields:

dia = −1

2

(
χ+
θ (θ) + (1− δ)χ−

θ (θ)
) δ
Λ

dLf

Lf
< 0.

Similarly, the change in the equilibrium spread is:

d∆r = −δ
2
χ−
θ (δµ− 1) · µ · dL

f

Lf
< 0.

Finally, we obtain:

dil = dil + d∆r = −δ
2

(
χ+
θ (δµ− 1) + χ−

θ (δµ− 1)
)
(δµ− 1)

dLf

Lf
< 0.

From this expression, we obtain the semi elasticities displayed in the proposition, for the corridor system

regime.

Case 1.b (im > 0 and Λ ≥ δ). We now consider the policy effects of changes in Lf
t and imt when

im ≥ 0 and Lf > δ
�∞
0
sf (s, t) ds. Thus, we have that in this case:

∂il

∂im
= 1,

∂ia

∂im
= 1,

∂∆r

∂im
= 0.

Therefore, the effects of changes in the IOR are again given by:

∂il

∂Lf
Lf = 0,

∂ia

∂Lf
Lf = 0,

∂∆r

∂Lf
Lf = 0.

Case 2 (im < 0). Assume that im < 0. In this case, banks cannot be satiated because 0 > im = ia

implies that banks would not hold deposits, a situation that we do not considered in body of the paper.

However, it is possible to construct equilibria where deposits are zero. In that case, households only hold

currency and the stock of loans is held by the CB. This is ruled out in the paper.

We now define implicitly θlb (im). Thus function maps the IOR to an interbank market tightness that takes

the deposit rate to exactly zero using (43):

0 ≡ im +
1

2

(
χ+
(
θlb (im)

)
+ (1− δ)χ− (θlb (im)

))
≥ 0. (51)

Also, we define,

Ξ =
(
χ+ (0) + (1− δ)χ− (0)

)
.

If im ∈ [−Ξ, 0], then since (χ+ (θ) + (1− δ)χ− (θ)) is strictly increasing and bounded between [0,Ξ], we

obtain that θlb (im) is well defined in im ∈ [−Ξ, 0]. We now substitute (49) with M0 into (51) to obtain:

1

2

(
χ+

(
δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds

Lf

)
− 1

)
+ (1− δ)χ−

(
δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds

Lf

)
− 1

))
= −im ≤ Ξ.

From here, we define Llb (im, f) as the CB balance sheet size such that without currency, the interbank
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market tightness is exactly θlb (im). We obtain:

δ

(�∞
0
sf (s, t)

Llb (im, f)

)
− 1 = θlb (im) .

Rearranging yields:

Llb (im, f) ≥ δ

1 + θlb (im)

� ∞

0

sf (s, t) .

We now analyze the effects of policy in two cases, depending on whether Λ ≤ Llb (im, f) or Λ > Llb (im, f).

Case 2.a (im < 0 and Lf < Llb (im, f)). Next, we show that if Lf < Llb (im, f) and im < 0, the

effects of policy are identical to those of Case 1.a. First, observe that,

θlb (im) = δ

(�∞
0
sf (s, t)

Llb (im, f)

)
− 1 < δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds−M0/P

Lf −M0/P

)
− 1 = δµ− 1 = θ,

for any M0 where the inequality follows because:

∂

∂M0

[
δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds−M0/P

Lf −M0/P

)]
=

1

P
µ

(
1

Lf −M0/P
− 1∑

z∈{u,e}
�∞
0
sf (z, s, t) ds−M0/P

)
> 0.

and Lf < Llb. Thus, we have that Lf < Llb implies θ > θlb (im). Since this is the case, from Proposition

1, and {χ−, χ+} are increasing in θ, we have that ia > im, from the bank’s problem. Since ia > im implies

that M0/P = 0, the equilibrium is characterized by the conditions of case 1.a.

Case 2.b (im < 0 and Lf ≥ Llb (im, f)). Next, we show that if Lf ≥ Llb (im, f) and im < 0, the

effects of MP are modified. OMO lead to an increase in currency and reductions in rates to an interest rate

reversal. Observe that if Lf > Llb (im, f) and M0/P = 0,then the corresponding market tightness would

be:

θ̃ = δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds

Lf

)
− 1 ≤ δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds

Llb (im, f)

)
− 1 = θlb (im) .

Now, since {χ+, χ−} are increasing in θ, the equilibrium deposit rate obtained from Proposition 1 would be

negative if the market tightness is indeed θ̃ < θlb (im). Thus, it must be the case that if Lf > Llb (im, f),

M0 > 0 to obtain a tightness such that θ = θlb (im) .

In particular, it must be the case that:

θlb (im) = δ

(∑
z∈{u,e}

�∞
0
sf (z, s, t) ds−M0/P

Lf −M0/P

)
− 1, (52)
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and solving M0/P , we obtain that:

M0/P =
1 + θlb (im)

1− δ + θlb (im)
Lf − δ

1− δ + θlb (im)

� ∞

0

sf (s, t) > 0. (53)

We now consider the change in currency balances and markets rates in relation to changes in Lf . We have

that taking differentials in (53) we obtain:

dM0/P =
µ

µ− 1
dLf .

where we used that:

µ

µ− 1
=

δµ

δµ− δ
=

1 + θ

θ + 1− δ
=

1 + θlb (im)

1− δ + θlb (im)
.

Next, we produce the effects of policy instruments on the equilibrium rates. We obtain

∂

∂Lf

[
θlb (im)

]
= 0,

and thus, it must be the case that:

∂il

∂Lf
Lf = 0,

∂ia

∂Lf
Lf = 0,

∂∆r

∂Lf
Lf = 0.

Next, consider the effects of changes in the IOR on the market rates and currency holdings. Note that we

have from (51) that if the deposit rate is zero:

dim = −1

2

(
χ+
θ + (1− δ)χ−

θ

)
dθ < 0.

Then, from the expression for the spread, we have that:

d∆r =
δ

2
χ−
θ dθ = −δ

χ−
θ(

χ+
θ + (1− δ)χ−

θ

)dim < 0.

Thus:

∂∆r

∂im
= −δ

χ−
θ (δµ− 1)(

χ+
θ (δµ− 1) + (1− δ)χ−

θ (δµ− 1)
) < 0.

Finally, the effect on currency holdings is given by is:

dθ = δµ

(
1

Lf −M0/P
− 1�∞

0
sf (s, t)−M0/P

)
dM0/P > 0.

Thus, we obtain that increases in the IOR produce increases in the reserve balances:

∂

∂im
[M0/P ] = −

δµ
(

1
Lf−M0/P

− 1�∞
0

sf(s,t)−M0/P

)
1
2

(
χ+
θ + (1− δ)χ−

θ (θ)
) < 0.
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General solution to currency balances. We obtain a general solution to the currency holdings.

The solution is given by:

M0/P = I[im<0] ·max

{
1 + θlb (im)

1− δ + θlb (im)
Lf − δ

1− δ + θlb (im)

� ∞

0

sf (s, t) , 0

}
.

Note that when im < 0, then θlb (im) > 0. Thus, the term on first entry is positive when:

Lf >
δ

1 + θlb (im)
,

which coincides with (53) when im.

Regimes that are not considered in the paper. There could be equilibria where Lf = Lb =
M0
P =

∑
z∈{u,e}

�∞
0
sf (z, s, t) ds. That is, equilibria in which the CB does all the intermediation. In this

case, deposits are zero and bank balance sheets are empty. This will occur if the interest on reserves is so

low that banks cannot hold deposits, −im > ι
2 . At that point, the deposit rate is zero and the loans rate is

also zero. We do not consider this case.

QED.
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D.3 Proof of Lemma 1 - Phillips Curve Derivation (10)

Derivation of the Retailers of Phillips Curve. We factor out the aggregate price level Pτ

from the instantaneous return in the expression q (p, t). We obtain:

q (p, t) = max
{ṗj

τ}

� ∞

t

exp (−ρτ)
Pτ

((
pjτ − pt

)
yjτ − Pτ

Θ

2

(
ṗjτ

pjτ

)2

Yτ

)
dτ,

s.t. yjτ =
(
pjτ
)−ϵ

P ϵ
τYτ .

Substituting:

Pτ = Pt exp

(� τ

t

πsds

)
,

we express the objective as:

q (p, t)Pt = max
{ṗj

τ}

� ∞

t

exp

(� τ

t

(−πs − ρ) ds

)((
pjτ − pt

)
yjτ − Pτ

Θ

2

(
ṗjτ

pjτ

)2

Yτ

)
dτ.

s.t. yjτ =
(
pjτ
)−ϵ

P ϵ
τYτ

We recast this equation into the following HJB equation for the nominal value of the retailer’s problem,

Q (p, t) ≡ q (p, t)Pt. The corresponding equation is:

(ρ+ πt)Q (p, t) = max
{ṗj

t}

(
pjt − pt

)(
pjt

)−ϵ

P ϵ
t Yt − Pt

Θ

2

(
ṗjt

pjt

)2

Yt +Qpṗ
j
t + Q̇.

Next, we obtain the first-order condition:

Qp −Θ
ṗjt(
pjt

)2PtYt = 0. (54)

Deriving the first-order condition with respect to time yields:

Qppṗ+ Q̇p = Θ

 p̈jt(
pjt

)2PtYt − 2

(
ṗjt

pjt

)2
Pt

pjt
Yt

+Θ
ṗjt(
pjt

)2 ṖtYt +Θ
ṗjt(
pjt

)2PtẎt. (55)

Next, we produce the envelope condition. For that, we take the derivative of Q (p, t) with respect to the

individual price pj to obtain:

(ρ+ πt)Qp = −ϵ
(
pjt − pt

)(
pjt

)−(ϵ+1)

P ϵ
t Yt + p−ϵ

j,tP
ϵ
t Yt +Θ

(
ṗjt

pjt

)2
Pt

pjt
Yt +Qppṗ

j
t + Q̇p. (56)
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Substituting (55) and (54) into (56), we obtain:

(ρ+ πt)Θ
ṗjt(
pjt

)2PtYt = −ϵ
(
pjt − pt

)(
pjt

)−1

yjt + yjt +Θ

(
ṗjt

pjt

)2
Pt

pjt
Yt +

Θ

 p̈jt(
pjt

)2Pt − 2

(
ṗjt

pjt

)2
Pt

pjt

Yt +Θ
ṗjt(
pjt

)2 ṖtYt +Θ
ṗjt(
pjt

)2PtẎt.

Using that all managers act identically, we substitute, pjt = Pt and yj,t = Yt, and obtain:

(ρ+ πt)Θ
Ṗt

Pt
Yt =

(
1− ϵ (Pt − pt)P

−1
t

)
Yt +Θ

 P̈t

Pt
− 2

(
Ṗt

Pt

)2
Yt + 2Θ

Ṗt
2

P 2
t

Yt +Θ
Ṗt

Pt
Ẏt.

Recall that inflation and the price acceleration are:

πt =
Ṗt

Pt
→ π̇t =

 P̈t

Pt
−

(
Ṗt

Pt

)2
 .

Replacing these conditions, in the condition above, we arrive that the following condition:

ρΘπtYt +Θπ2
t Yt =

{
1− ϵ

(
1− pt

Pt

)}
Yt +Θπ̇tYt +Θπ2

t Yt +ΘπtẎt

Dividing both sides by ΘYt, we simplify things to:

ρπt =
1− ϵ

(
1− pt

Pt

)
Θ

+ π̇t + πt
Ẏt
Yt

Recall that mct ≡ pt

Pt
represents the real marginal cost for retailers. Then, we arrive at the Phillips curve:

(
ρ− Ẏt

Yt

)
πt =

ϵ

Θ

(
mct −

ϵ− 1

ϵ

)
+ π̇t. (57)

In present value form, this equation is given by:

πt =
ϵ

Θ

� ∞

t

e−(τ−t)ρYτ
Yt

(
mcs −

ϵ− 1

ϵ

)
ds.

In the current framework, retailers make positive profits. Flow real profit in the symmetric equilibrium is

given by(
pjt
Pt

− pt
Pt

)
yjt = (1−mct)Yt.
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We assume that profits earned by retailers are paid out uniformly to all households, via the government’s

lump sum rebate τ lump
t .

D.4 Proof of Lemma 2 - Value per Worker Derivation (11)

Derivation of the value per worker. Here we derive the marginal value per worker. Consider

the wholesale firm’s problem 4. We obtain:

G (n, t) = max
{vτ}

� ∞

t

exp (−ρτ)
[
pτ
Pτ
nτ − wτ

Pτ
nτ − vτµ

]
dτ,

s.t. ṅτ = jτvτ − ξnτ .

This expression leads to the following HJB equation for the intermediate good firm’s problem. The corre-

sponding equation is:

ρG (n, t) = max
{vt}

(
pt
Pt

− wt

Pt

)
nt − vtµ+Gnṅt + Ġ.

s.t. ṅt = jtvt − ξnt

Substituting the constraint on ṅt, we obtain:

ρG (n, t) = max
{vt}

(
pt
Pt

− wt

Pt

)
nt − vtµ+Gn (jtvt − ξnt) + Ġ.

The first-order condition with respect to vacancies, vt, is:

jtGn = µ. (58)

We conjecture the value function as follows:

G (n, t) = gtnt (59)

We verify this guess below. Under this assumption, we obtain that the first order condition is:

jtg (t) = µ (60)

This relationship must hold in a solution with finite vacancies, if indeed the conjectur is to be verified. We

replace the condition into the HJB equation and using our guess obtain:

(ρ+ ξ) gtnt =

(
pt
Pt

− wt

Pt

)
nt ++

=0︷ ︸︸ ︷
(jtgt − µ) vt + ġtnt,

which verifies the conjecture. Hence, we obtain:

(ρ+ ξ) gt =

(
pt
Pt

− wt

Pt

)
+ ġt. (61)
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The integral solution to this equation is:

g (t) =

� ∞

t

exp (− (τ − t) (ρ+ ξ))

(
pτ
Pτ

− wτ

Pτ

)
dτ.

Assuming an ex-post hold up problem by workers in the intermediate-good firm, we obtain that wτ

Pτ
=

(1− η) pτ

Pτ
, because of the holdup problem. Under this assumption, the real value per worker is given by

g (t) = (1− η)

� ∞

t

exp (− (τ − t) (ρ+ ξ))
pτ
Pτ
dτ

Using the definition of marginal cost relative to final goods, mct ≡ pt

Pt
, we get

g (t) = η

� ∞

t

exp (− (τ − t) (ρ+ ξ))mcτdτ.

D.5 Flow of Funds Identity

In the proofs that follow, we make use of the following Lemma.

Lemma 4 If the deposit, loan and money markets clear, then:

Pt

∑
z∈{u,e}

� ∞

s̄

sf (z, s, t) ds = 0. (62)

Proof. The deposits and loan markets clearing conditions require:

Ab
t =

∑
z∈{u,e}

� ∞

0

aht (s, z)f(s, z, t)ds (63)

Lb
t + Lf

t =
∑

z∈{u,e}

� 0

s̄

lht (s, z)f(s, z, t)ds, (64)

and clearing in the money market requires:

M b
t +M0t =Mt. (65)

If we aggregate the budget constraint—the balance sheet identity—of banks, we obtain:

Ab
t = Lb

t +M b
t . (66)

Once we combine (63), (64), and (65) into (66), we obtain:

∑
z∈{u,e}

� ∞

0

aht (s)f(s, z, t)ds =
∑

z∈{u,e}

� 0

s̄

lht (s)f(s, z, t)ds+Mt −M0t − Lf
t . (67)
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Nominal deposits and currency are related to real wealth via:

Pt

∑
z∈{u,e}

� ∞

0

sf(s, z, t)ds =
∑

z∈{u,e}

� ∞

0

aht (s, z)f(s, z, t)ds+M0t. (68)

and, similarly for loans:

−Pt

∑
z∈{u,e}

� 0

s̄

sf(s, z, t)ds =
∑

z∈{u,e}

� 0

s̄

lht (s)f(s, z, t)ds. (69)

This condition can be expressed in terms of real household wealth, with the use of (68) and (69):

Pt

∑
z∈{u,e}

� ∞

0

sf(s, z, t)ds−M0t = Pt

∑
z∈{u,e}

� 0

s̄

sf(s, z, t)ds+Mt −M0t − Lf
t .

Thus, using that Mt = Lf
t , we obtain:

∑
z∈{u,e}

� ∞

0

sf(s, z, t)ds =
∑

z∈{u,e}

� 0

s̄

sf(s, z, t)ds.

Thus, clearing in all nominal asset markets implies clearing in a single real asset market, (62). QED.

D.6 Proof of Government Real Bugdet (equation 15)

The nominal profits of the CB are given by:

ΠCB
t = iltL

f
t − imt (Mt −M0t) + ιt

(
1− ψ−

t

)
B−

t .

Note that the earnings from discount window loans equal the average payment in the interbank market,

and thus:

ιt
(
1− ψ−

t

)
B−

t = −E [χt (b (At, At − Lt))] . (70)

By Proposition 1, banks earn zero profits in expectation. Thus,

−E [χt (b (At, At − Lt))] = iltL
b
t + imt M

b
t − iatA

b
t . (71)

Thus, substituting (70) and (71) into the expression for πf
t above yields:

ΠCB
t = iltL

f
t − imt (Mt −M0t) + iltL

b
t + imt M

b
t − iatA

b
t .

= iltL
h
t − iatA

h
t ,
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where we used the clearing condition in the money market, M b
t +M0

t =Mt, the deposit market, Ab
t = Ah

t ,

and the loans market, Lh
t = Lb

t + Lf
t . Now, observe that:

ΠCB
t = −iltPt

∑
z∈{u,e}

� 0

s̄

sf(z, s, t)ds− iat

Pt

∑
z∈{u,e}

� ∞

0

sf(z, s, t)ds−M0t.

 ,

but we know from the household’s problem that iatM0t = 0. Hence, profits are given by:

ΠCB
t = −iltPt

∑
z∈{u,e}

� 0

s̄

sf(z, s, t)ds− iatPt

∑
z∈{u,e}

� ∞

0

sf(z, s, t)ds.

Then, since ia = il −∆r, we have that:

ΠCB
t = −iltPt

 ∑
z∈{u,e}

� ∞

s̄

sf(z, s, t)ds

+∆rtPt

∑
z∈{u,e}

� ∞

0

sf(z, s, t)ds.

Thus, from Lemma 4, we obtain:

ΠCB
t = Pt ·∆rt

∑
z∈{u,e}

� ∞

0

sf(z, s, t)ds.

Now, we turn to the government’s budget constraint, (16), we have that:

PtTt = Pt ·

∆rt
∑

z∈{u,e}

� ∞

0

sf(z, s, t)ds

+ Pt

(
τ l · (1− Ut)− b · Ut

)
,

and dividing by the price level we obtain

Tt = ∆rt
∑

z∈{u,e}

� ∞

0

sf(z, s, t)ds+ τ l · (1− Ut)− b · Ut

as stated by the proposition. QED.

D.7 Proof of Single-Clearing condition (equation 18)

Proof of Clearing in all markets. Lemma 4 shows that if all asset markets clear, then there is

clearing in real wealth (18). We now prove the converse. That is, if (18) holds, then, the deposit, loans,

and money markets must clear.

The proof is by contradiction. We start by taking (18) as given. Next, we multiply by Pt on both sides

and, by definition, obtain:

∑
z∈{u,e}

� 0

s̄

lht (s)f(z, s, t)ds =
∑

z∈{u,e}

� ∞

0

aht (s)f(z, s, t)ds+M0t.
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From the central bank’s balance sheet, we obtain that:

∑
z∈{u,e}

� 0

s̄

lht (s)f(z, s, t)ds =
∑

z∈{u,e}

� ∞

0

aht (s)f(z, s, t)ds+Mt −M b
t , for t ∈ [0,∞). (72)

We now substitute the balance sheet of the CB, Mt = Lf
t , and the consolidated balance sheet of banks,

M b
t = Ad

t − Lb
t , to obtain:

∑
z∈{u,e}

� 0

s̄

lht (s)f(z, s, t)ds− Lf
t − Lb

t =
∑

z∈{u,e}

� ∞

0

aht (s)f(z, s, t)ds−Ad
t .

This equation guarantees that if there is no clearing in the loans market, there is no clearing in the deposit

market by that same amount. Assume there is a deviation from market clearing in the amount ε. Then,

an income ∆r · ε would not be accounted for by the equation. However, since all the spread is earned by

the CB, following Proposition (17), it must be that ε = 0. QED.

Proof of Walras’s Law. Next, we prove that if (18) holds, then the goods market clears, which is

a derivation of Walras’s law in the continuous-time setting.

Recall that f satisfies the following KFE equations:

∂

∂t
f (e, s, t) = − ∂

∂s
[µ (e, s, t) f (e, s, t)]− Γeu

t · f (e, s, t) + Γue
t · f (u, s, t) , and

∂

∂t
f (u, s, t) = − ∂

∂s
[µ (u, s, t) f (u, s, t)]− Γue

t · f (u, s, t) + Γeu
t · f (e, s, t) .

A similar KFE holds for the cumulative distributions:

∂

∂t
F (e, s, t) = −µ (e, s, t) f (e, s, t)− Γeu

t · F (e, s, t) + Γue
t · F (u, s, t) , and

∂

∂t
F (u, s, t) = −µ (u, s, t)F (u, s, t)− Γue

t · F (u, s, t) + Γeu
t · F (e, s, t) .

Recall that the integrals in the clearing conditions, are Lebesgue integrals. It is convenient to be explicit

about the mass points at the debt limit in (18):

0 =
∑

z∈{u,e}

[
s̄F (z, s̄, t) + lim

σ→s̄+

� ∞

σ

sf(z, s, t)ds

]
,

so that the first integral is in the Riemann sense. Then, taking time derivatives:

0 =
∑

z∈{u,e}

 ∑
z∈{u,e}

s̄
∂

∂t
F (z, s̄, t) +

∂

∂t

[
lim

σ+→s̄

� ∞

σ

sf(z, s, t)ds

] . (73)
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Substituting the KFE equations into the first term, we obtain:

∑
z∈{u,e}

s̄
∂

∂t
F (z, s̄, t) = −s̄ ·

∑
z∈{u,e}

(
µ (z, s, t) f (z, s̄, t) + Γzz′

t · F (z, s, t)− Γz′z
t · F (z′, s, t)

)
.

= −
∑

z∈{u,e}

s̄µ (z, s, t) f (z, s̄, t) . (74)

The second line follow from:
∑

z∈{u,e} Γ
zz′

t · F (z, s, t)− Γz′z
t · F (z′, s, t) = 0.34

Substituting the KFE equations into the second term of (73), we obtain:

∑
z∈{u,e}

∂

∂t

[
lim
σ→s̄

� ∞

σ

sf(z, s, t)ds

]
=

∑
z∈{u,e}

� ∞

s̄

−s ∂∂s [µ (s, t) f (z, s, t)]︸ ︷︷ ︸
A≡

−s
(
Γzz′

t · f (z, s, t) + Γz′z
t · f (z′, s, t)

)
︸ ︷︷ ︸

B≡

 ds.
We analyze each term in the integral. First, notice that B = 0, because again:

∑
z∈{u,e}

[
Γzz′

t · f (z, s, t)− Γz′z
t · f (z′, s, t)

]
= 0,

Second, we use integration by parts, to obtain that A is given by:

−
∑

z∈{u,e}

lim
σ→s̄

� ∞

σ

s
∂

∂s
[µ (s, t) f (z, s, t)] ds =

∑
z∈{u,e}

−s · µ (s, t) f (z, s, t)|∞s̄︸ ︷︷ ︸
A.1≡

+
∑

z∈{u,e}

� ∞

s̄

µ (s, t) f (z, s, t) ds︸ ︷︷ ︸
A.2≡

.

Importantly, to use integration by parts, in evaluating the definite integral, we use the Lebesgue integral.

Thus, A.2 is in the Lebesgue sense again.

Evaluating the termsA.1 yields,

lim
s→∞

f (z, s, t) = 0 and lim
σ→s̄

σ · µ (σ, t) f (z, σ, t) = s̄
∂

∂t
F (z, s, t).

Thus, summing the terms (74) and A.1, we obtain that (73), is equivalent to:

0 =
∑

z∈{u,e}

� ∞

s̄

µ (s, t) f (z, s, t) ds.

Next, we compute the integral A.2. Recall that:

µ (s, t) =
[
rt (s)

(
s−mh (z, s, t) /Pt

)
− Ṗt/Pt ·mh (z, s, t) /Pt − c (z, s, t) + wt (z)

]
.

From the household’s problem, iat ·mh (z, s, t) = 0 for s > 0 and mh (z, s, t) = 0 for any s ≤ 0. Hence, we

34The employment status is independent of z and population is preserved. Thus, the condition says that
within a wealth level, the mixing from employment to unemployment does not change wealth.
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have that:(
rt (s) + Ṗt/Pt

)
mh (z, s, t) /Pt = 0.

Thus, we can freely add the term above into the drift, since this term is always zero, hence:

µ (s, t) = [rt (s) · s− c (z, s, t) + wt (z)] .

Thus, A.2 reduces to:

∑
z∈{u,e}

� ∞

s̄

µ (s, t) f (z, s, t) ds =
∑

z∈{u,e}

� ∞

s̄

[rt (s) s− c (z, s, t) + wt (z)] f (z, s, t) ds. (75)

We have that:

∑
z∈{u,e}

� ∞

s̄

(wt (z)− c (s, t)) f (z, s, t) ds =
(
1− τ l

)
(1− Ut) + b · Ut + Tt − Ct,

and using Yt = (1− Ut) we have:

∑
z∈{u,e}

� ∞

s̄

(wt (z)− c (s, t)) f (z, s, t) ds = Yt − Ct − τ l · (1− Ut) + b · Ut + Tt

In turn, we have that:

∑
z∈{u,e}

� ∞

s̄

rt (s) s · f (z, s, t) ds = rlt
∑

z∈{u,e}

� ∞

s̄

s · f (z, s, t) ds−∆rt
∑

z∈{u,e}

� ∞

0

sf (z, s, t) ds

= −∆rt
∑

z∈{u,e}

� ∞

0

sf (z, s, t) ds.

where the second line follows from the market clearing condition, Lemma 4.

Thus, summing the last two equations above, we obtain that (75) is:

0 =
∑

z∈{u,e}

� ∞

s̄

[rt (s) s− c (z, s, t) + wt (z)] f (z, s, t) ds

= Yt − Ct + Tt − τ l · (1− Ut) + b · Ut −∆rt
∑

z∈{u,e}

� ∞

0

sf (z, s, t) ds,

but recall that (17) implies that Tt = τ l · (1− Ut)− b · Ut +∆rt
∑

z∈{u,e}
�∞
0
sf (z, s, t) ds. Thus, we obtain

that (75) implies:

0 = Yt − Ct.

This expression verifies Walras’s Law.
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D.8 Proof of Corollary 2

The discount window profits are equal to ∆rt
�∞
0
sf (s, t) ds since banks are competitive and earn zero

profits. Given the same real credit spread ∆rt, the equilibrium real wealth distribution f (s, t) is also same.

Thus Corollary 2 is established. QED.

E. Steady State

Steady State: Supply-Side Block. Here, we present aggregate output in steady state when MP

guarantees that steady-state inflation is zero.

Proposition 7 [Steady-State Supply] When πss = 0 steady-state output is given by:

Yss =
Γeu
ss

ξ + Γeu
ss

, Uss =
ξ

ξ + Γeu
ss

, Γeu
ss = Ξ

(
1,

(
J−1

(
µ

η

ϵ

ϵ− 1
(ρ+ ξ)

))−1
)
,

where the function J is defined as J (x) ≡ Ξ (x, 1).

In this proposition, we assume that monetary policy targets zero inflation rate, i.e., πss = 0. Nominal policy

rate adjusts accordingly to achieve πss = 0. At steady state, we have that πt and π̇t are zero. Thus, as a

result, the Phillips curve (10), requires:(
ρ− Ẏt

Yt

)
πt|πt=0 =

ϵ

Θ

(
mct −

ϵ− 1

ϵ

)
+ π̇t|π̇t=0 =⇒ mcss =

ϵ− 1

ϵ
. (76)

We can pin down mcss.

When the marginal cost is constant, then, using (11) we obtain that:

gss = η ×
� ∞

0

exp (− (ρ+ ξ) τ)mcssdτ =⇒ gss = η
mcss
(ρ+ ξ)

.

Using (76), we find that:

gss =
η (ϵ− 1)

ϵ (ρ+ ξ)
. (77)

Next, using (14-12) and the above expression for gss, we can pin down the equilibrium job filling rate jss:

jss =
µ

η

ϵ

ϵ− 1
(ρ+ ξ) . (78)

Define the function:

J (x) ≡ Ξ (x, 1) ,
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We obtain the unemployment-to-vacancy ratio using the matching function:

Ξ

(
Uss

vss
, 1

)
= J

(
Uss

vss

)
= jss

Inverting the expression above and using (78) we obtain:

Uss

vss
= J−1

(
µ

η

ϵ

ϵ− 1
(ρ+ ξ)

)
. (79)

Recall that the flow of unemployment is given by (13), that at steady state, we have that:

0 = ξ (1− Uss)− UssΓ
eu
ss .

In turn, recall that we can use the homogeneity of Ξ to obtain:

Γeu
ss = Ξ

(
1,
vss
Uss

)
= Ξ

(
1,

(
J−1

(
µ

η

ϵ

ϵ− 1
(ρ+ ξ)

))−1
)
,

where the second equality follows from (79). Thus, the steady-state unemployment rate is:

Uss =
ξ

ξ + Ξ

(
1,
(
J−1

(
µ
η

ϵ
ϵ−1 (ρ+ ξ)

))−1
) . (80)

Aggregate output is given by

Yss = 1− Uss =

Ξ

(
1,
(
J−1

(
µ
η

ϵ
ϵ−1 (ρ+ ξ)

))−1
)

ξ + Ξ

(
1,
(
J−1

(
µ
η

ϵ
ϵ−1 (ρ+ ξ)

))−1
) .

When consider the limiting case where η → 0, µ→ 0, and η
µ → κ > 0 hold so that we don’t have to consider

profits by the intermediate good producers. Under this limiting case, real wage is equal to real marginal

cost, i.e., wss

Pss
= mcss =

ϵ−1
ϵ . In this case, the expressions simplify to:

Yss =
Γeu
ss

ξ + Ξ

(
1,
(
J−1

(
ϵκ
ϵ−1 (ρ+ ξ)

))−1
) , Uss =

ξ

ξ + Ξ

(
1,
(
J−1

(
ϵκ
ϵ−1 (ρ+ ξ)

))−1
) ,

and

Γeu
ss = Ξ

(
1,

(
J−1

(
ϵκ

ϵ− 1
(ρ+ ξ)

))−1
)
.

Steady State and Long-Run MP Effect. To solve the rest of the equilibrium, we search for

the real interest rate ra such that consumption of goods is equal to the production of goods. Since we

know all the relevant prices, we can solve household’s problem and derive aggregate demand. Notice that
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there are flow profits by retailers represented by (1−mcss)Yss. We assume that these profits are paid out

uniformly to all households, via the government’s lump sum rebate. Consider a steady state. Let the CB

target a long-run credit spread ∆rss. At steady state, the disturbance in job-separation ϕt must be zero

because this is the only possibility consistent with a Phillips curve with constant inflation. We also know

that inflation has no effect in a steady state—here MP is super-neutral, unlike in a standard new-Keynesian

model. Thus, at steady-state, the real interest rate rass solves:

0 =
∑

z∈{u,e}

� ∞

s̄

sfss (z, s) ds.

Once we obtain an equilibrium rass in steady state, which corresponds to the real interest rate, inflation is

given by the corresponding Fisher’s equation:

πss = π∞ = im∞ − ra∞ +
1

2

[
χ+
∞ + (1− δ)χ−

∞
]
.

Once inflation is obtained, all nominal variables grow at the rate of inflation. To implement ∆rss, the path

of Mt must be consistent with the Λss that produces ∆rss according to (5).

Transitions. Along a transition, things work differently. In particular, πt is given by (21). Then, given

imt and Λt, i
l
t and i

a
t are determined by (4). The real rates rlt and r

a
t follow from the Fisher’s equation,

rxt = ixt − πt for x ∈ {l, a}. (81)

Then, to satisfy clearing in the asset market, ϕt adjusts to satisfy (18).

Appendix F.1 discusses the equilibrium restriction imposed on MP along a transition. That appendix also

connects the monetary properties of this model with the monetary properties of classic Bewley models,

in connection to fiscal and monetary interactions. Appendix G explains how transitions are calculated

numerically.
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F. Implementation of Desired Spreads

In this section we discuss alternative MP implementations. We then discuss the implementability condition

of a spread in the model and finally provide a discussion on fiscal policy considerations.

F.1 Implementation Conditions

In the body of the text we lay out the general equilibrium block and work under the premise that the CB

directly controls spreads. The following proposition describes the set of allocations that can be achieved

by a policy with a stationary inflation path where the spread is treated as an endogenous variable and we

work directly with the policy instruments
{
imt ,L

f
t

}
.

Proposition 8 [Implementation Conditions] Consider a desired equilibrium path for {rat ,∆rt, πt,Γeu
t }t≥0.

To implement the equilibrium path, the CB chooses
{
imt ,L

f
t

}
subject to the following restrictions:

1. Lf
t ≤ −

� 0

s̄
sf(s, t)ds,

2. The equilibrium liquidity ratio is Λt = min
{
Λzlb (imt , ιt) ,Λ

MB
(
ft,Lf

t

)}
,

3. The real transfer, Tt, adjusts to satisfy (17),

4. The real spread, ∆rt, satisfies (5) given Λt,

5. Given imt and Λt, the nominal rates
{
ilt, i

a
t

}
are given by (4),

6. Given Γz′z
t , the unemployment rate Ut satisfies (13),

7. Inflation is consistent with the Phillips curve, (1),

8. The real rates
{
rlt, r

a
t

}
are the corresponding nominal rates minus inflation,

9. The distribution of wealth, f , evolves according to (9); f0 given,

10. Given f , the job separation Γz′z
t guarantees the real asset market-clearing condition (18).

Proposition 8 describes the allocations that can be induced by the CB. These allocations are affected by the

CB because it controls the spread and the IOR. The implementation constraint Lf
t ≤ −

� 0

s̄
sf(s, t)ds simply

tells that there must be enough private liabilities to set Lf
t . The proof is immediate and only requires the

use the of the equilibrium conditions where the liquidity ratio is treated exogenously.

MP implementation in a liquidity trap: Spread and Negative Interest on Re-
serves. The implementability conditions above generalize to liquidity traps. Figure 2 that depicts a map

from the liquidity ratio to borrowing and lending rates. That figure is valid when police variables are set

within the corridor system regime. In Figure 10, we keep ΛMB constant and show borrowing and lending

rates, as we vary im. As we can observe, there’s an interval of values for im such that the spread is constant

and both rates move in parallel. Once im reaches a sufficiently low value, further reductions in im begin to

increase spreads while the deposit rate stays fixed. Beyond that point, currency is held by households.

A33



-550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0

0

100

200

300

400

500

600

700

800

(a) Equilibrium Rates

-550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0

65

70

75

80

85

90

95

100

105

(b) Equilibrium Spread

Figure 10: Negative Interest on Reserves and the DZLB.

Note: This figure depicts the equilibrium rates and spread as a function of interest on reserves under the DZLB. All the rates
and spread are expressed in basis points.

In 11, we vary im and ΛMB together. Panel (a) shows the spread as a function of both policy variables.

There are many combinations that allow us to implement the same spread at the DZLB. Panels (b-c) show

the corresponding deposit and loans rates.
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(a) Equilibrium Spread (b) Equilibrium Deposit Rate

(c) Equilibrium Loan Rate

Figure 11: Negative Interest on Reserves, Liquidity Ratio and the DZLB.

Note: This figure presents the equilibrium spread, deposit rate and loan rate as functions of the liquidity ratio and interest on
reserves under the DZLB. All the rates and spread are expressed in basis points.

F.2 Alternative Implementations

Fiscal Consequences of different tool configurations. In the current formulation, the CB

has two tools,
{
imt ,M

cb
t

}
. We observed that im controls inflation directly and that the size of the balance

sheet can achieve a desires spread. We took as given the spread ι. In principle, a desired spread can also be

implemented by moving ι, while keeping M cb fixed. We could be tempted to argue that these instruments
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have different fiscal consequences, but they don’t:

Corollary 2 [No Fiscal Consequence of an implementation choice] Consider two policies
{
ιt,M

cb
t

}
and{

imt ,M
cb
t

}
that implement the same spread, ∆rt. Both are consistent with the same government budget

constraint.

Thus, in the context of this model, moving
{
ιt,M

cb
t

}
or
{
imt ,M

cb
t

}
most implement the same set of alloca-

tions.

Interbank Rate Targets. It is also worth discussing alternative MP implementations (Bindseil,

2014, reviews cross-country practices.). One way to the control the spread directly is through OMO that

targets the interbank rate, i
f
. Because there is a map from i

f
to ∆rt, a target for the interbank rate also

implements a spread independently of im. In practice, most CBs have an explicit interbank rate target,

but restrict the way in which they achieve that target: targeting an interbank market at the middle of the

corridor, i
f
= im + 1

2 ι.

Other countries keep the rate on reserves at zero, but move ι and maintaining a constant distance between

the discount rate and the target. With these additional constraints, CBs simultaneously spreads and

inflation when they change policy rates—perhaps inadvertently.
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G. Solution Algorithm

The computational method follows (Achdou et al., 2021) closely. The main differences in the approach is

the spread and the conceptual approach of the RSS. Equations 4, 17, and 4 are provide the equilibrium

set of equations we need to solve the model. They allow us to solve the model entirely by solving for the

equilibrium path of a single object Γt. The spread ∆rt follows immediately from Proposition 1 if we know

the path for ιt and Λt set by the CB. The real spread gives us rlt. To solve the household’s problem, we

need the path for
{
rat , r

l
t, Tt

}
. The path for Tt must be consistent with (17). Then, the evolution of f (s, t)

obtained from the household’s problem yields the right-hand side of equation (18). The equilibrium rate rat
must be the one that solves (4) implicitly.

Note that in the steady state of the model, given the real credit spread ∆r, the HJB equation (8), KFE

equation (9) and the real market clearing condition (18) imply that the equilibrium solution to the real

markets is independent of implementation and nominal variables.

Thus, we split the exposition of the solution algorithm into two parts: the part of real market and the

implementation block. For the part of real market, the path of credit spreads is taken as given. For the

part of implementation and nominal variables, we take the IOR im as given and use the equations in (5)

and the Fisher equation to pin down the steady-state interbank market tightness θ, nominal deposit rate ia

and inflation rate π. However, in solving the transition dynamics, the real market variables are connected

to implementation and nominal variables via the Phillips curve and the Taylor Rule. Therefore, given

the initial IOR im0 and the path of the real credit spreads ∆rt, we solve the real deposit rate rat and the

endogenous labor- market adjustment rate Γt jointly using the real market clearing condition and the Fisher

equation.

G.1 Solution Algorithm: Stationary (Steady-State) Equilibrium

The supply side block is entirely determined by the equilibrium labor flows described in E. That block can

be solved analytically. For the demand side, we need to compute the value of the real deposit rate that

satisfies the real market clearing condition (18) in steady state. We focus on the stationary equilibrium

where the stead-state job finding rate and job separation rate are the natural rates calibrated in Table 2.

The demand side requires to solve the steady-state real deposit rate rass. For that we use an iteration

algorithm that proceeds as follows. Let us denote z ∈ {e, u} as the household’s employment status with

switch, z′ = {e, u}, and s ∈ [s̄,∞) as the household’s asset holdings. First, we take the real credit spread

∆r as given, consider an initial guess of deposit rate ra,0 and fiscal transfer T 0,0, and set the iteration index

j, k := 0. Then:

1. Individual household’s problem. Given ra,k and T j,k, for each z ∈ {e, u}, solve the household’s

value function V j,k (z, s) from HJB equation (8) using a finite difference method. Calculate the consumption

function cj,k (z, s) and the asset accumulation rate µj,k (z, s) = rk (s) · s− cj,k (z, s) + wj,k (z), where

rk (s) =

ra,k, if s > 0,

ra,k +∆rss, if s ≤ 0,

wj,k (e) = 1− τ l + T j,k, and wj,k (u) = b+ T j,k.
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2. Aggregate distribution. Given µj,k (z, s) and cj,k (z, s), solve the KF equation (9) for f j,k (z, s) using

a finite difference method.

3. Fiscal transfer and total output. Given cj,k (z, s), f j,k (z, s), calculate fiscal transfer

T j+1,k = ∆rss ·
� ∞

0

s
[
f j,k (e, s) + f j,k (u, s)

]
ds+ τ l · ess − b · uss.

If T j+1,k is close enough to T j,k, proceed to 4. Otherwise, set j := j + 1 and proceed to 1.

4. Equilibrium real deposit rate. Given f j,k (z, s), compute the net supply of real financial claims

S
(
ra,k

)
=

� ∞

s̄

s
[
f j,k (e, s) + f j,k (u, s)

]
ds

and update the interest rate: if S
(
ra,k

)
> 0, decrease it to ra,k+1 < ra,k and vice versa. If S

(
ra,k

)
is close

enough to 0, stop. Otherwise, set k := k + 1 and j = 0, and proceed to 1.

5. Equilibrium implementation and nominal variables. Given the exogenous credit spread ∆rss and

IOR rate imss, the steady-state interbank market tightness θss, the nominal deposit rate iass and inflation

rate πss are given by
∆rss =

δ
2χ

− (θss) ,

iass = imss +
1
2 [χ

+ (θss) + (1− δ)χ− (θss)] ,

πss = iass − rass.

G.1.1 Solution to the HJB equation

The household’s HJB equation is solved using an upwind finite difference scheme similar to Achdou et al.

(2021). It approximates the value function V (z, s) on a finite grid with step ∆s : s ∈ {s1, ..., sI}, where
si = si−1 + ∆s = s1 + (i− 1)∆s for 2 ≤ i ≤ I. The bounds are s1 = s̄ and sI = smax, such that

∆s = (smax − s̄) / (I − 1). The upper bound smax is an arbitrarily large number such that f (z, s, t) = 0

for all s > smax. We use the short-hand notation Vz,i ≡ V (z, si), and similarly for the policy function cz,i

and µz,i.

Note that the HJB involves the first and second derivatives of the value function, V ′
z,i = V ′

s (z, si) and

V ′′
z,i = V ′′

s (z, si). The first derivative is approximated with either a forward (F ) or a backward (B)

approximation,

V ′
z,i ≈ ∂FVz,i ≡

Vz,i+1 − Vz,i
∆s

, (82)

V ′
z,i ≈ ∂BVz,i ≡

Vz,i − Vz,i−1

∆s
. (83)

The second-order derivative is approximated by a central difference:

V ′′
z,i ≈ ∂ssVz,i ≡

Vz,i+1 − 2Vz,i + Vz,i−1

(∆s)
2 . (84)

Let the superscript n be the iteration counter. The HJB equation is approximated by the following upwind
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scheme,

V n+1
z,i − V n

z,i

∆
+ρV n+1

z,i = U
(
cnz,i
)
+∂FV

n+1
z,i ·

(
µn
z,i,F

)+
+∂BV

n+1
z,i ·

(
µn
z,i,B

)−
+Γzz′

[
V n+1
z′,i − V n+1

z,i

]
, (85)

where

µn
z,i,F = r (si) · si −

(
∂FV

n
z,i

)−1/γ
+ w (z) , (86)

µn
z,i,B = r (si) · si −

(
∂BV

n
z,i

)−1/γ
+ w (z) . (87)

The optimal consumption is set to

cnz,i =
(
∂V n

z,i

)−1/γ
, (88)

where

∂V n
z,i = ∂FV

n
z,i1µn

z,i,F>0 + ∂BV
n
z,i1µn

z,i,B<0 + ∂V̄ n
z,i1µn

z,i,F≤01µn
z,i,B≥0.

In the above expression, ∂V̄ n
z,i =

(
c̄nz,i
)−γ

where c̄nz,i is the consumption level such that µn
z,i = 0, i.e.,

c̄nz,i = r (si) · si + w (z) .

Substituting the definition of the derivatives (82), (83) and (84), equation (85) is

V n+1
z,i − V n

z,i

∆
+ρV n+1

z,i = U
(
cnz,i
)
+
V n+1
z,i+1 − V n+1

z,i

∆s
·
(
µn
z,i,F

)+
+
V n+1
z,i − V n+1

z,i−1

∆s
·
(
µn
z,i,B

)−
+Γzz′

[
V n+1
z′,i − V n+1

z,i

]
.

Collecting terms with the same subscripts on the right-hand side

V n+1
z,i −V n

z,i

∆ + ρV n+1
z,i = U

(
cnz,i
)
+ αn

z,iV
n+1
z,i−1 + βn

z,iV
n+1
z,i + ζnz,iV

n+1
z,i+1 + Γzz′

V n+1
z′,i

αn
z,i = − (µn

z,i,B)
−

∆s

βn
z,i = − (µn

z,i,F )
+

∆s +
(µn

z,i,B)
−

∆s − Γzz′

ζnz,i =
(µn

z,i,F )
+

∆s

(89)

Note that α1 = 0, and we set ζI = 0 for the stability of the algorithm. Equation (89) is a system of 2I

linear equations which can be written in the following matrix form:

1

∆

(
Vn+1 −Vn

)
+ ρVn+1 = Un +AnVn+1

A40



where

An =



βn
e,1 ζne,1 0 · · · 0 Γeu 0 0 · · · 0

αn
e,2 βn

e,2 ζne,2 0 · · · 0 Γeu 0 0 · · ·

0 αn
e,3 βn

e,3 ζne,3 0 · · · 0 Γeu 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . . αn
e,I βn

e,I 0 0 0 0 Γeu

Γue 0 0 0 0 βn
u,1 ζnu,1 0 0 0

0 Γue 0 0 0 αn
u,2 βn

u,2 ζnu,2 0 0

0 0 Γue 0 0 0 αn
u,3 βn

u,3 ζnu,3 0

0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · 0 Γue 0 · · · 0 αn
u,I βn

u,I



, (90)

and

Vn+1 =



V n+1
e,1

...

V n+1
e,I

V n+1
u,1

...

V n+1
u,I


, Un =



U
(
cne,1
)

...

U
(
cne,I
)

U
(
cnu,1

)
...

U
(
cnu,I

)


.

The system in turn can be written as

BnVn+1 = dn (91)

where Bn =
(

1
∆ + ρ

)
I−An and dn = Un + 1

∆Vn.

Version with Idiosyncratic Discount Shocks. In this note, we introduce discount rate het-

erogeneity into the standard household problem. The HJB equation by household is given by

ρV (z, s, ρ, t) = max
{c}

U (c)+V
′

sµ (z, s, ρ, t)+Γz,z
t (V (z,, s, ρ, t)− V (z, s, ρ, t))+Γρ,ρ

t (V (z, s, ρ,, t)− V (z, s, ρ, t))+V̇t

where z captures the employment status, s captures the asset holding status, and ρ captures the discount

rate status. To simplify our analysis, we assume that ρ takes either ρ1 or ρ2. µ (z, s, ρ, t) is given by
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µ (z, s, ρ, t) = rts− c+wt (z) subject to the following constraint ṡ ≥ 0 at s = s and ct ≤ wt (z) in s ∈ [s, st).

We approximate the value function V (z, s) on a finite grid with step ∆s: s ∈ {s1, · · · , sI} ,where si =

s1 + (i− 1)∆s.

HJB involves the first and second derivatives of the value function. The first derivative is approximated

with either a forward (F) or a backward (B) approximation,

V
′

z,i,ρ ≈ ∂FVz,i,ρ =
Vz,i+1,ρ − Vz,i,ρ

∆s

V
′

z,i,ρ ≈ ∂BVz,i,ρ =
Vz,i,ρ − Vz,i−1,ρ

∆s

where z captures the employment status, i captures the state of asset holding, and ρ captures the state of

discount rate. The second order difference is approximated by a central difference:

V
′′

z,i,ρ ≈ ∂ssVz,i,ρ =
Vz,i+1,ρ − 2Vz,i,ρ + Vz,i−1,ρ

(∆s)
2 .

Let the superscript n be the iteration counter. The HJB equation is approximated by the following upward

scheme,

V n+1
z,i,ρ1

− V n
z,i,ρ1

∆
+ ρ1V

n+1
z,i,ρ1

= U
(
cnz,i,ρ1

)
+ ∂FV

n+1
z,i,ρ1

(
µn
z,i,ρ1,F

)+
+∂BV

n+1
z,i,ρ1

(
µn
z,i,ρ1,B

)−
+ Γz,z

t

(
V n+1
z′ ,i,ρ1

− V n+1
z,i,ρ1

)
+ Γρ2ρ1

t

(
V n+1
z,i,ρ2

− V n+1
z,i,ρ1

)
where

µn
z,i,ρ1,F = r (si) si −

(
∂FV

n
z,i,ρ1

)−1/γ
+ w (z)

µn
z,i,ρ1,B = r (si) si −

(
∂BV

n
z,i,ρ1

)−1/γ
+ w (z)

and

V n+1
z,i,ρ2

− V n
z,i,ρ2

∆
+ ρ2V

n+1
z,i,ρ2

= U
(
cnz,i,ρ2

)
+ ∂FV

n+1
z,i,ρ2

(
µn
z,i,ρ2,F

)+
+∂BV

n+1
z,i,ρ2

(
µn
z,i,ρ2,B

)−
+ Γz,z

t

(
V n+1
z′ ,i,ρ2

− V n+1
z,i,ρ2

)
+ Γρ1ρ2

t

(
V n+1
z,i,ρ1

− V n+1
z,i,ρ2

)
where

µn
z,i,ρ2,F = r (si) si −

(
∂FV

n
z,i,ρ2

)−1/γ
+ w (z)

µn
z,i,ρ2,B = r (si) si −

(
∂BV

n
z,i,ρ2

)−1/γ
+ w (z) .

The optimal consumption is set to

cnz,i,ρ =
(
∂V n

z,i,ρ

)−1/γ
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where

∂V n
z,i,ρ = ∂FV

n
z,i,ρ1µn

z,i,ρ,F>0 + ∂BV
n
z,i,ρ1µn

z,i,ρ,B<0 + ∂FV
n

z,i,ρ1µn
z,i,ρ,F≤01µn

z,i,ρ,B≥0

In the above expression, ∂FV
n

z,i,ρ =
(
cnz,i,ρ

)−γ
where cnz,i,ρ is the consumption level such that µn

z,i,ρ = 0, i.e.,

cnz,i,ρ = r (si) si + w (z)

Substituting everything into the HJB equation, we get

V n+1
z,i,ρ1

− V n
z,i,ρ1

∆
+ ρ1V

n+1
z,i,ρ1

= U
(
cnz,i,ρ1

)
+
V n+1
z,i+1,ρ1

− V n+1
z,i,ρ1

∆s

(
µn
z,i,ρ1,F

)+
+
V n+1
z,i,ρ1

− V n+1
z,i−1,ρ1

∆s

(
µn
z,i,ρ1,B

)−
+ Γz,z

(
V n+1
z′ ,i,ρ1

− V n+1
z,i,ρ1

)
+ Γρ2ρ1

(
V n+1
z,i,ρ2

− V n+1
z,i,ρ1

)
and

V n+1
z,i,ρ2

− V n
z,i,ρ2

∆
+ ρ2V

n+1
z,i,ρ2

= U
(
cnz,i,ρ2

)
+
V n+1
z,i+1,ρ2

− V n+1
z,i,ρ2

∆s

(
µn
z,i,ρ2,F

)+
+
V n+1
z,i,ρ2

− V n+1
z,i−1,ρ2

∆s

(
µn
z,i,ρ2,B

)−
+ Γz,z

(
V n+1
z′ ,i,ρ2

− V n+1
z,i,ρ2

)
+ Γρ1ρ2

(
V n+1
z,i,ρ1

− V n+1
z,i,ρ2

)
.

Collecting terms with the same subscripts on the right-hand side

V n+1
z,i,ρ1

− V n
z,i,ρ1

∆
+ρ1V

n+1
z,i,ρ1

= U
(
cnz,i,ρ1

)
+αn

z,i,ρ1
V n+1
z,i−1,ρ1

+βn
z,i,ρ1

V n+1
z,i,ρ1

+ζnz,i,ρ1
V n+1
z,i+1,ρ1

+Γz,zV n+1
z′ ,i,ρ1

+Γρ2ρ1V n+1
z,i,ρ2

where

αn
z,i,ρ1

= −
(
µn
z,i,ρ1,B

)−
∆s

βn
z,i,ρ1

= −
(
µn
z,i,ρ1,F

)+
∆s

+

(
µn
z,i,ρ1,B

)−
∆s

− Γzz,

− Γρ2ρ1

ζnz,i,ρ1
=

(
µn
z,i,ρ1,F

)+
∆s

and

V n+1
z,i,ρ2

− V n
z,i,ρ2

∆
+ρ2V

n+1
z,i,ρ2

= U
(
cnz,i,ρ2

)
+αn

z,i,ρ2
V n+1
z,i−1,ρ2

+βn
z,i,ρ2

V n+1
z,i,ρ2

+ζnz,i,ρ2
V n+1
z,i+1,ρ2

+Γz,zV n+1
z′ ,i,ρ2

+Γρ1ρ2V n+1
z,i,ρ1

where

αn
z,i,ρ2

= −
(
µn
z,i,ρ2,B

)−
∆s

βn
z,i,ρ2

= −
(
µn
z,i,ρ2,F

)+
∆s

+

(
µn
z,i,ρ2,B

)−
∆s

− Γzz,

− Γρ1ρ2
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ζnz,i,ρ2
=

(
µn
z,i,ρ2,F

)+
∆s

This is a system of 2× 2× I linear equations which can be written in the following matrix form:

1

∆

(
V n+1 − V n

)
+ ρV n+1 = Un +AnV n+1

where
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A45



V n+1 =



V n+1
e,1,ρ1

...

V n+1
e,I,ρ1

V n+1
u,1,ρ1

...

V n+1
u,I,ρ1

V n+1
e,1,ρ2

...

V n+1
e,I,ρ2

V n+1
u,1,ρ2

...

V n+1
u,I,ρ2


,

Un =



U
(
cne,1,ρ1

)
...

U
(
cne,I,ρ1

)
U
(
cnu,1,ρ1

)
...

U
(
cnu,I,ρ1

)
U
(
cne,1,ρ2

)
...

U
(
cne,I,ρ2

)
U
(
cnu,1,ρ2

)
...

U
(
cnu,I,ρ2

)


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, and

ρ =



ρ1 0 · · · · · · · · · 0

0
. . . 0

...
...

...

... 0 ρ1 0
...

...

...
... 0 ρ2 0

...

...
...

... 0
. . . 0

0 · · · · · · · · · 0 ρ2


The system in turn can be written as

1

∆

(
V n+1 − V n

)
+ ρV n+1 = Un +AnV n+1

BnV n+1 = dn

where Bn = 1
∆I + ρ−An and dn = Un + 1

∆V n.

Summary Algorithm - HJB. The algorithm to solve the HJB is as follows. We take the interest

rate {r (si)}Ii=1 and fiscal transfer T as given and begin with an initial guess
{
V 0
e,i, V

0
u,i

}I
i=1

. Set n = 0.

Then:

1. Compute
{
∂FV

n
z,i, ∂BV

n
z,i

}I
i=1

using (82) and (83).

2. Compute
{
cnz,i
}I
i=1

using (88) and
{
µn
z,i,F , µ

n
z,i,B

}I
i=1

using (86) and (87).

3. Find
{
V n
z,i

}I
i=1

solving the linear system of equations (91).

4. If
{
V n+1
z,i

}
is close enough to

{
V n
z,i

}
, stop. Otherwise set n := n+ 1 and proceed to step 1.

G.1.2 Solve KFE in Stationary Equilibrium

The stationary distribution of real wealth satisfies the Kolmogorov Forward equation:

0 = − ∂

∂s
[µ (z, s) f (z, s)]− Γzz′

· f (z, s) + Γz′z · f (z′, s) , (92)

1 =

� ∞

s̄

[f (e, s) + f (u, s)] ds. (93)

We also solve the equation using a finite difference scheme. We use the notation fz,i ≡ f (z, si) .The system

can be expressed as

0 = −
fz,i

(
µn
z,i,F

)+ − fz,i−1

(
µn
z,i−1,F

)+
∆s

−
fz,i+1

(
µn
z,i+1,B

)− − fz,i
(
µn
z,i,B

)−
∆s

− Γzz′
fz,i + Γz′zfz′,i,
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or equivalently

fz,i−1ζz,i−1 + fz,iβz,i + fz,i+1αz,i+1 + fz′,iΓ
z′z = 0.

The linear equations system can be written as

ATf = 0, (94)

where AT is the transpose of A = limn→∞ An. Notice that An is the approximation of the operator A
and AT is the approximation of the adjoint operator A∗. In order to impose the normalization constraint

(93), we replace one of the entries of the zero vector in equation (94) by a positive constant. We solve the

system (94) and obtain a solution f̂ . Then we renormalize as

fz,i =
f̂z,i∑I

i=1

∑
z∈{e,u} f̂z,i∆s

.

The same is true of the case with idiosyncratic shocks.

Summary Algorithm - KFE. The algorithm to solve the stationary distribution is as follows.

1. Given the interest rate {r (si)}Ii=1 and fiscal transfer T , solve the HJB equation to obtain an estimate of

the matrix A.

2. Given A, find the aggregate distribution f .

G.2 Solution Algorithm: Transition Dynamics

For transitions, again we split the solution into the supply and demand side blocks.

G.2.1 Solving the Supply Side Block

1. We conjecture the sequence for Γeu
t hiring rate.

2. The evolution of the unemployed workers is

u̇ = ξ (1− ut)− utΓ
eu
t .

This is an autonomous ODE, with initial condition u0. Given the initial guess, Γeu
t it produces an

entire sequence of ut.

3. Using Yt = nt = 1− ut, the solution to step 2 produces a sequence of output.

(a) this step also produce a series for Ẏt

Yt
= ṅt

nt

4. We backout the number of vacancies using ut and Ξ
(
1, vt

ut

)
= Γeu

t .

5. Using Ξ
(

ut

vt
, 1
)
= jt we obtain a sequence of job filling rates.
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6. By using (60), we get the sequence of g (t) valuations of filled jobs by the firm:

gt =
µ

jt
.

7. We use the ODE representation of gt (61) to generate a sequence for the real intermediate good price

denoted by mct

(
= pt

Pt

)
:

mct =
gt (ρ+ ξ)− ġ (t)

1− η
.

8. We use the backward solution to the (10),

rnπt =
ϵ

Θ

(
mct −

ϵ− 1

ϵ

)
+ π̇t

to solve for inflation πt.

πt =
ϵ

Θ

� ∞

t

exp (−rn (τ − t))

(
mcτ − ϵ− 1

ϵ

)
dτ

where

rn ≡

(
ρ− Ẏt

Yt

)
.

� To numerically solve the forwards equation. We treat the transition as lasting for T discrete

time intervals. And treat the T part as if we have reached steady state

9. Using the Taylor rule, we generate a sequence of nominal rates (because we know πt and Ẏt/Yt).

The combination of imt and inflation, gives us a sequence for rmt .

10. We pin down a liquidity ratio using a desired spread ∆rt.

11. We obtain: rat and rℓt as given by the liquidity ratio and imt .

12. Given rat and rℓt we obtain a sequence of aggregate demand Ct.

(a) wages are pinned down by mct

(b) we also know the sequence of price adjustment costs

(c) we also know sequence of transfer due to firm profits.

13. We iterate over the Γeu
t to solve for the goods or asset market clearing condition.

G.2.2 Solving the Demand-Side Block

The equilibrium transition path is solved in finite horizon
[
0, T̄

]
, assuming that the terminal state of the

economy is steady state. The finite horizon is discretized evenly into NT̄ points in time dimension. We

use an iterative algorithm as follows. Given the initial distribution of real wealth f0 (z, s) and the path of
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exogenous shocks (e.g., equation (28), guess a path of real deposit rate ra,0t , endogenous adjustment rate

Γ0
t total output Yt, and fiscal transfer Tt, and set the iteration index j, k := 0. Then

0. The asymptotic steady state. The asymptotic steady-state value function and real wealth distribution

are calculated from Section G.1.

1. The aggregate output, employment and unemployment. Given the path of Γ
eu(k)
t and the

terminal condition Uk
T̄

= uss, solve the law of motion of unemployed mass (13) backwards in time to

compute the path of unemployed mass Uk
t . Calculate the path of aggregate output Y k

t = 1− Uk
t .

2. Individual household’s problem. Given ra,kt , Γk
t , Uk

t and T j,k
t , and the terminal condition V j,k

(
z, s, T̄

)
=

Vss (z, s), solve the HJB equation (8) backwards in time to compute the path of V j,k (z, s, t). Calculate the

consumption policy function cj,k (z, s, t) and the rate of asset accumulation µj,k (z, s, t).

3. Aggregate distribution. Given cj,k (z, s, t) and µj,k (z, s, t), solve the Kolmogorov Forward equation

(9) with initial condition f j,k (z, s, 0) = f0 (z, s) forward in time to compute the path for f j,k (z, s, t).

4. Fiscal transfer and total output. Given cj,k (z, s, t), f j,k (z, s, t) and Uk
t calculate the path of fiscal

transfer

T j+1,k
t = ∆rt ·

� ∞

0

s
[
f j,k (e, s, t) + f j,k (u, s, t)

]
ds+ τ l ·

(
1− Uk

t

)
− b · Uk

t .

If
{
T j+1,k
t

}T̄

t=0
is close enough to

{
T j,l
t

}T̄

t=0
, proceed to 5. Otherwise, set j := j + 1 and proceed to 2.

5. Equilibrium inflation rate and nominal deposit rate. Given the path of aggregate unemployed

mass Uk
t and the terminal condition of inflation πk

T̄
= πss, solve the Phillips curve (21) backwards in time to

compute the path of the inflation rate πk
t . Next, given the paths of discretionary rate īmt , Taylor parameter

ηt and the inflation rate πk
t , use the Taylor rule (27) to calculate the path of IOR im,k

t . Then given the

path of credit spread ∆rt, back out the path of interbank market tightness θt using

∆rt =
δ

2
χ− (θt) .

Finally, compute the nominal deposit rate using the implementation equation (4), i.e.,

ia,kt = im,k
t +

1

2

[
χ+ (θt) + (1− δ)χ− (θt)

]
.

6. Equilibrium real deposit rate and endogenous adjustment rate. Given f j,k (z, s, t), ia,kt and πk
t ,

calculate

Sr
(
ra,kt ,Γ

eu(k)
t , t

)
=

� ∞

s̄

s
[
f j,k (e, s, t) + f j,k (u, s, t)

]
ds

and

Sϕ
(
ra,kt ,Γ

eu(k)
t , t

)
= ia,kt − ra,kt − πk

t .

We update
{
ra,kt ,Γ

eu(k)
t

}T̄

t=0
to
{
ra,k+1
t ,Γ

eu(k1)
t

}T̄

t=0
using the Broyden’s method. However, one can use
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alternative numerical methods for finding roots in 2NT̄ variables. If

max
t

{
max

{∣∣∣Sr
(
ra,kt ,Γ

eu(k)
t , t

)∣∣∣ , ∣∣∣SΓ
(
ra,kt ,Γ

eu(k)
t , t

)∣∣∣}}
is close enough to 0, stop. Otherwise, set k := k + 1 and j = 0, and proceed to 1.

G.2.3 Solution to the HJB Equation

The dynamic HJB equation (8) can be approximated using an upwind scheme as

ρVn = Un+1 +An+1Vn +
1

∆t

(
Vn+1 −Vn

)
,

where An+1 is defined in an analogous fashion to (90), and ∆t = T/N denotes the time length of each

discrete period. We start with the terminal condition VN = Vss and solve the path of value function

backward, where Vss denotes the solution to stationary equilibrium obtained from Section G.1. For each

n = 0, 1, ..., N − 1, define Bn =
(

1
∆t + ρ

)
I−An+1 and dn+1 = Un+1 + 1

∆Vn+1, and we can solve

Vn = (Bn)
−1

dn+1.

G.2.4 Solution to the KF Equation

Let {An}N−1
n=1 be the solution obtained from Section G.2.3. It is the approximation to the operator A.

Using a finite difference scheme similar to the one we employed in Section G.1.2, we obtain:

fn+1 − fn

∆t
= (An)

T
fn+1,

which implies

fn+1 =
(
I−∆t (An)

T
)−1

fn, n = 0, 1, ..., N − 1. (95)

We start from the initial period condition f0 = f0 and solve the KFE forward using (95).

G.3 Solution Algorithm: Risky Steady State Equilibrium

The risky steady state equilibrium consists of the post-shock transition path and the pre-shock steady state.

We solve the two parts simultaneously based on the algorithm in Section G.1 and G.2 as follows. Set the

iteration index k := 0. Then

1. Use the algorithm in Section G.1 to solve the post-shock steady state. Use the post-shock steady-state

distribution fss (z, s) as the guess of initial wealth distribution fk (z, s, 0) at time 0, and use the algorithm

in Section G.2 to solve the post-shock transition path and time-0 value function V k (z, s, 0).

2. Use V k (z, s, 0) in step 1 as the input into the following risky steady state HJB:

ρVrss (z, s) = max
{c}

U (c)+
∂Vrss (z, s)

∂s
·µ (z, s)+Γzz′

[Vrss (z
′, s)− Vrss (z, s)]+χrss [V (z, s, 0)− Vrss (z, s)] .
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Solve the risky steady state solution V k
rss (z, s) and fkrss (z, s) using the above HJB together with the KF

equation (9) and the real market clearing condition (18) according to the algorithm in Section G.1.

3. Set fk+1 (z, s, 0) = fkrss (z, s) as the initial wealth distribution at time 0, and then use the algorithm in

Section G.2 to solve the post-shock transition path and time-0 value function V k+1 (z, s, 0).

4. Iterate step 2 and 3 until
{
fkrss (z, s) , V

k
rss (z, s)

}
converges.
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