Discussion of Di Tella & Kurlat "Why are Bank Exposed to Monetary Shocks"

S. Bigio¹

¹UCLA

October 27, 2017

S. Bigio (UCLA)

October 27, 2017 1 / 18

Motivation in Paper

• Bernanke and Gertler: "Inside the Black-Box"

- Interest-Rate, Credit Channel, and Balance-Sheet
- Inflation Tax Channel
- DT-K: balance-sheet channel applied to banks
- Study:
 - **Complete Markets Theory:** why wouldn't banks insure against shock?
 - Quantitatively: how big are effects on spreads and net worth?
- Theoretical lesson in relation to work by Di Tella:
 - aggregate risk shared, "taxation-gov spending risk" not shared

Motivation in Paper

• Bernanke and Gertler: "Inside the Black-Box"

- Interest-Rate, Credit Channel, and Balance-Sheet
- Inflation Tax Channel
- DT-K: balance-sheet channel applied to banks
- Study:
 - **Complete Markets Theory:** why wouldn't banks insure against shock?
 - Quantitatively: how big are effects on spreads and net worth?
- Theoretical lesson in relation to work by Di Tella:
 - aggregate risk shared, "taxation-gov spending risk" not shared

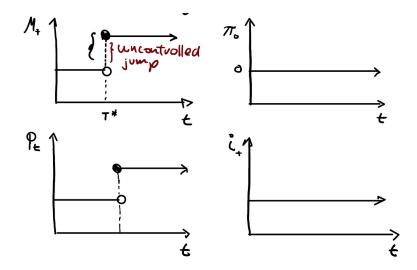
- Consider for simplicity Poisson monetary shock
 - arrives only once
 - intensity θ
 - *M* constant before shock
 - ΔM after shock
- Poisson shock exogenous, but Fed chooses μ after shock s.t.:

$$\dot{M} = \mu M.$$

• Two policies:

- Price Jumps No Inflation: $\mu = 0$ after shock
- No Price Jump Inflation: μ such that no jump upon shock

Price Jump - No Inflation



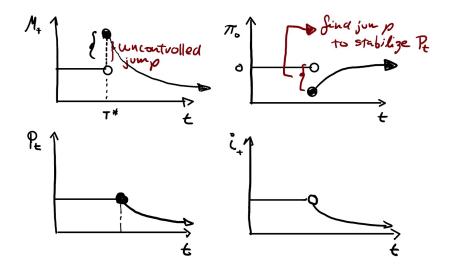
S. Bigio (UCLA)

October 27, 2017 _ 4 / 18

< 行い

э

No Price Jump - Inflation Jump



- First: Incomplete Market
- Consider the stationary equilbirium prior to the shock
- Observations:
 - real rate constant r
 - Price of capital constant $q=(
 hoeta)^{-1}$
 - wlog Ak = 1
- ullet Steady state n/w pinned down by au

Banks

$$0 = \rho(1-\gamma)V(n)(\log(x) - \frac{1}{1-\gamma}\log((1-\gamma)V(n)) + V_n(\dot{n})... + \theta[V(n_+, +) - V(n)]$$

where

$$\frac{\dot{n}}{n} = (r - \chi(i,s)x_t + s\phi + T(n) - \tau^n)$$

Value instant after the shock:

$$V(\cdot,+)$$
 and $n^+ = n + \Delta T(n)$

In paper, I think missing: T(n) monetary transfers
 turns out to be VERY important

S. Bigio (UCLA)

October 27, 2017

7 / 18

Household Problem

Household

$$0 = \rho(1-\gamma)U(w)(\log(x) - \frac{1}{1-\gamma}\log((1-\gamma)U(w)) + U_w(\dot{w})... + \theta[U(w_+, +) - V(w)]$$

where

$$\frac{\dot{w}}{w} = (r - \chi(i, s)x_t + s\phi + T(w) - \tau^w)$$

with same notation:

$$w^+ = w + \Delta T(n)$$

< 行い

æ

Stationary Equilibrium - No Inflation

No inflation benchmark, before the shock:

T(w) = T(n) = 0

Replacing optimal conditions for consumption:

$$0 = \frac{\dot{n}}{n} = (r - \rho + s\phi - \tau^{n})$$

$$0 = \frac{\dot{w}}{w} = (r - \rho + \tau^{n}z)$$

$$\rho(1-\alpha)(1-\beta)\iota(i,s)^{\varepsilon-1}s^{-\varepsilon} = \underbrace{\phi z}_{deposit \ supply}$$

$$\underbrace{\frac{M}{P}}_{money \ supply} = \frac{1}{\rho\beta}\rho\alpha(1-\beta)\iota(i,s)^{\varepsilon-1}s^{-\varepsilon}$$

$$r + \pi, \ \text{got to solve for } \{s, z, P, \tau^{n}\}.$$
Ith=market clearing: $\frac{1}{\rho\beta}$)

S. Bigio (UCLA)

Given *i* = (total wea

- (Different from Paper) Price Jumps No Inflation: $\mu = 0$ after shock
- Critical: how do we introduce money?
- Case 1: Proportional transfers
 - $T(n) = \Delta M / M \cdot n$
 - Rescales everything by P
 - Real wealth unchanged/nominal jumps
- Case 2: Lump-Sum transfers
 - Redistributive Effect
 - Incomplete markets: has effects
 - Complete markets: should wash out
- Case 3: (like in paper) G jumps
 - Ricardian Equivalence logic (DiTella JMP)

Policy Experiment - II

- (Like Paper) No Price Jump Inflation: μ such that no jump upon shock
- Logic is very different. Incomplete markets easier to understand
- Since price doesn't jump, and no contingent condtracts, z same
- To contain prices, upon ΔM , need to promise inflation:

$$\rho(1-\alpha)(1-\beta)\iota(i,s)^{\varepsilon-1}s^{-\varepsilon} = \underbrace{\phi z}_{deposit \ supply}$$
$$\underbrace{\frac{M(1+\Delta)}{P_o}}_{money \ supply} = \frac{1}{\rho\beta}\rho\alpha(1-\beta)\iota(i,s)^{\varepsilon-1}i^{-\varepsilon}$$

Non-Linear but unique solution *i* and *s*! Produces Change in Wealth Distribution:

$$0>\frac{\dot{n}}{n}=(r-\rho+s\phi-\tau^n)$$

S. Bigio (UCLA)

and

- Critical: how do we introduce money?
- Case 1: Proportional transfers
 - No redistribution effect after the shock
- Case 2: Lump-Sum transfers
 - Redistributive Effect
- Case 3: (like in paper) G jumps

- Back to paper
- Long-Term nominal asset can provide "Hedge"
 - If short term bond can drop, long-term bond will jump in value
- Changes price upon shock: value jump
- With Poisson able to find condition:

$$\frac{\xi_+}{\xi} \left(\frac{n}{n_+}\right)^{\gamma} = \frac{\zeta_+}{\zeta} \left(\frac{w}{w_+}\right)^{\gamma}$$

- ullet Marginal utility ξ_+/ξ for banker will JUMP, because less s drops
 - hold long-term asset if $\gamma > 1$

- Comment 1: Run Friedman Rule setting i = 0, then P = 0, and utility not defined
- Comment 2: Bianchi-Bigio model credit channel and balance-sheet channel
 - Balance sheet channel is small
 - Liquidity produces endogenous risk-averse behavior on banks
 - Depends on Policy

• Comments 3: Effects seem too large:

• Can effect by large? Back of Envelope

 $\Delta n = leverage * DurationRiskLoan - (leverage - 1)DurationRiskDeposit$

DurationRisk \sim Maturity $\Delta n \sim 11 * 4 - (10 - 1)1 = 34$

• This is close to number reported in the paper...it's HUGEComments on Theory

Interest-Rate Exposure Sub-Cat of Trading Revenue

• Comment 3: From Begenau, Bigio, Majerovitz:

Figure 1: Main Drivers of Losses

• Why only this source of risk?

The Numbers

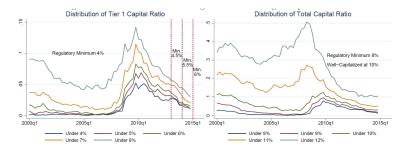
• Book-based assets don't move!

• Model predicts yes! Model predicts huge swings in deposit ratio!

17 / 18

- I A P

Also: few banks at constraints



October 27, 2017 18 / 18

3

イロト イポト イヨト イヨト