Supply, Demand, and Specialized Production

Discussion of Hamilton

by Saki Bigio (UCLA) on October 29, 2021

Introduction

* Most papers...

- * Most papers...
 - * have no good ideas.

- * Most papers...
 - * have no good ideas.
- * Optimal papers...

- * Most papers...
 - $\ast~$ have no good ideas.
- * Optimal papers...
 - $\ast~$ have one good idea

- * Most papers...
 - $\ast\,$ have no good ideas.
- * Optimal papers...
 - $\ast~$ have one good idea
- * This paper

- * Most papers...
 - $\ast\,$ have no good ideas.
- * Optimal papers...
 - \ast have one good idea
- * This paper
 - * perhaps more ideas than the optimal amount

* Most papers...

- * have no good ideas.
- * Optimal papers...
 - \ast have one good idea

* This paper

- \ast perhaps more ideas than the optimal amount
- \ast still, a paper I would want to have written

Discussion

* Key Idea:

- * adjustment to sectoral demand shocks
- * world with special inputs:
 - $\ast\,$ sunk, specialized, and market power
 - adjustment will be inefficient: lead to underutilization

* My Discussion:

- * present simplified model
- * what assumptions are needed
- * connect with some classical and recent literature
- * Paper has more to say: growth, product entry, inequality
 - \ast explain why model naturally connects to these ideas...
 - * but focus on the core

Hamilton-ish Model: Environment

- * representative household
 - * complete market: no risk, no inequality
- * j sectors
- * one unit of labor
 - * n_j supply of sector j work
 - * allocated in advance

Hamilton-ish Model - Production

* n_j pre-determined

Hamilton-ish Model - Production

* *n_j* pre-determined

* Production of *j*: subject to a capacity constraint

$$y_j = u_j n_j$$

where $u_j \in [0, 1]$

Hamilton-ish Model - Production

* *n*_j pre-determined

Production of j: subject to a capacity constraint

$$y_j = u_j n_j$$

where $u_j \in [0, 1]$

* *j* workers form a coalition

- * choose price p_j
- * maximizes revenues R_i

$$w_j = R_j/n_j$$

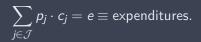
* important: u_j endogenous under-capacity

Static Block: Sectoral Consumption Choice

* Consumption choice:

$$C = \max_{\{c_j\}} \left(\sum_{j \in \mathcal{J}} \left(\alpha_{j,t}^{1/\sigma} \left(c_j + \bar{y}_j \right)^{1-1/\sigma} \right) \right)^{\frac{\sigma}{\sigma-1}}$$

subject to:



Static Block: Transformed problem

* Define $x_j \equiv c_j + \bar{y}_j$ so that:

$$C = \max_{\{x_j \ge \bar{y}_j\}} \left(\sum_{j \in \mathcal{J}} \left(\alpha_j^{1/\sigma} \left(x_j \right)^{1-1/\sigma} \right) \right)^{\frac{\sigma}{\sigma-1}}$$

subject to:

$$\sum_{j \in \mathcal{J}} p_j \cdot x_j = \bar{e} \equiv \sum_{j \in \mathcal{J}} R_j + \underbrace{p_j \bar{y}_j}_{\text{threat}}$$

Static Block: Product Demand

* Usual CES solution:

$$x_j = \left(\frac{p_j}{P}\right)^{-\sigma} \alpha_j C$$

Static Block: Product Demand

* Usual CES solution:

$$x_j = \left(\frac{p_j}{P}\right)^{-\sigma} \alpha_j C$$

* Apply definition:

$$c_j = \left(\frac{p_j}{P}\right)^{-\sigma} \alpha_j C - \underbrace{\overline{y}_j}_{\text{threat}}.$$

Union Problem

* Revenue:

$$R_{j} = \max_{p_{j}} p_{j} \cdot c_{j} \left(p_{j} \right)$$

subject to capacity constraint:

 $p_j > \bar{p}_j$

Union Problem

* Replacing demand function:

$$R_{j} = \max_{p_{j}} p_{j} \underbrace{\left(\frac{p_{j}}{P}\right)^{-\sigma} \alpha_{j} C - p_{j} \overline{y}_{j}}_{c_{j}(p_{j})}$$

subject to:

 $p_j > \overline{p}_j$

where \bar{p}_j

$$\underbrace{n_j}_{P} = \left(\frac{\bar{P}_j}{P}\right)^{-\sigma} \alpha_j C - \bar{y}_j$$

maximal output

Solution

* FOC:

$$(1-\sigma)\left(\frac{p_j}{P}\right)^{-\sigma}\alpha_j C - \bar{y}_j = 0$$

* Critical: bliss point * why? marginal cost is zero

- $\ast~{\rm Critical:}~\sigma<1~{\rm and}$
 - * why? otherwise no output

After some algebra...

* Sectoral output:

$$y_j = \min \left\{ \underbrace{n_j}_{\text{binding}}, \underbrace{rac{\sigma}{(1-\sigma)} \overline{y}_j}_{\text{non binding}}
ight\}$$

* Revenues:

$$R_{j} = \min\left\{\underbrace{\ldots}_{\text{binding non binding}}, \underbrace{\ldots}_{\text{binding }}\right\} (\alpha_{j,t}C)^{1/\sigma}$$

- * Binding: Walrasian wage
- * Non-biding: excess supply monopoly pricing

Symmetric Case

* Aggregate output:

$$C = \min\left\{\underbrace{\underbrace{n+\bar{y}}_{\text{binding}}, \underbrace{\bar{y}}_{\underbrace{(1-\sigma)}_{\text{non binding}}}\right\}$$

- * If *n* grows: output remains fixed!
- * Possibly binding at steady-state:
 - * under-utilization of factors
 - * this is why variety is interesting? Bilbie, Ghironi, and Melitz

Aggregate Demand Shocks?

* Patience shock:

$$1 = \beta(t) \frac{U'(C_{t+1})}{U'(C_t)} \mathcal{R}_t$$

Output is supply determined

* Does not affect under utilization!

* Important: think of sectoral shocks

Dynamics: Sectoral Shocks

- * Lucas-Prescott Island Model (Alvarez-Shimer)
 - * worker ex-ante choice of j island
 - * assumption: union cannot reject worker
 - * Training, skill monopoly?
 - * Firm-market power?
 - * Connect with Caballero Hammour

Dynamics: Sectoral Shocks

- * Lucas-Prescott Island Model (Alvarez-Shimer)
 - * worker ex-ante choice of j island
 - * assumption: union cannot reject worker
 - * Training, skill monopoly?
 - * Firm-market power?
 - * Connect with Caballero Hammour

* Idea:

- * $\alpha \in \left\{ \alpha^{L}, \alpha^{H} \right\}$ Markov switching intensity θ
- * work value function:

$$\rho \mathbf{v}(\mathbf{n}, \alpha) = \frac{R(\alpha, \mathbf{n}; C)}{\mathbf{n}} + \theta \underbrace{\mathbb{J}\left[\mathbf{v}(\mathbf{n}, \alpha') \mid \alpha\right]}_{\text{shock}}.$$

* Unemployment island:

 $\ast\,$ stuck for τ periods: then choose where to go

$$\rho \mathcal{V} = \underbrace{\exp\left(-\rho\tau\right)}_{\text{unit}} \max_{\alpha} \left\{ \mathbf{v}\left(\mathbf{n}\left(\alpha\right),\alpha\right) \right\}.$$

Two Shock Example

- * Two capacities: $\{\overline{n^l, n^h}\}$
 - $\ast~$ Unemployment Rate:

$$u = \tau \cdot \theta \cdot \left(n^h - n^l \right)$$

* Equilibrium Condition

$$\underbrace{\mathbf{v}\left(\alpha^{L}\right) = \mathcal{U}}_{\text{adjustment indiff}} = \exp\left(-\rho\tau\right)\mathbf{v}\left(\alpha^{H}\right).$$

Solution

* Labor flows:

 $1 = n^{h} + \tau \cdot \theta \cdot \left(n^{h} - \underline{n^{l}}\right) + n^{l}$ unemployment

and indifference:

Solution

* Labor flows:

$$1 = n^{h} + \underbrace{\tau \cdot \theta \cdot \left(n^{h} - n^{l}\right)}_{\text{unemployment}} + n^{l}$$

and indifference:

$$\mathbf{v}\left(\alpha^{\prime},\mathbf{n}^{\prime}\right) = \exp\left(-\rho\tau\right)\mathbf{v}\left(\alpha^{h},\mathbf{n}^{h}\right)$$

$$\rho \mathbf{v}(\alpha, \mathbf{n}) = \frac{R(\alpha, \mathbf{n}; C)}{\mathbf{n}} + \theta \left(\mathbf{v}(\alpha', \mathbf{n}') - \mathbf{v}(\alpha, \mathbf{n}) \right)$$

Paper Pencil Case

* Assume $\theta = \rho$ and $\sigma = \bar{y} = 1/2$ and $\tau = 1$

Solution:

* Resource Constraint

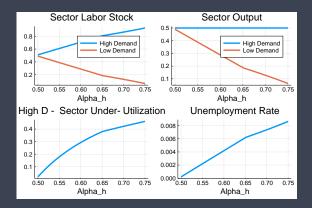
$$1 = n^h + \underbrace{\tau \cdot \theta \cdot \left(n^h - n^l\right)}_{\text{unemployment}} + n^l.$$

* Indifference Condition

$$\left(\frac{\exp\left(\rho\right) - 1/2}{1 - \exp\left(\rho\right)/2}\right)^{2} \underbrace{\frac{1}{\bar{y} + n^{l}}}_{\text{non-binding}} = \underbrace{\frac{\bar{y}}{n^{h2}}}_{\text{binding}} \frac{\alpha^{h}}{\alpha^{l}}$$

* Possibly no solution

One Picture



Various Degrees of High Demand

Characterization:

* Equilibrium must feature:

- * (too little) unemployment | reallocation..
- * ...but under-utilization in high-demand sector
- frictionless economy: wage would absorb the cost
 not here
- * Dynamics: very interesting but left out!

Conclusion

Conclusion

- * Very nice paper!
- * Lot to think about!