Firm Heterogeneity, Capital Misallocation and Optimal Monetary Policy

Discussion at Itam

by Saki Bigio (UCLA) on September 23, 2022 » Point of the paper

- * Investigates Role of Firm Heterogeneity in NK transmission
- * Marries NK and Moll models

» Point of the paper

- $\ast\,$ Investigates Role of Firm Heterogeneity in NK transmission
- * Marries NK and Moll models
- * Discussion:
 - * how does MP impact capital misallocation?
 - * how does misallocation impact monetary policy?

» Point of the paper

- $\ast\,$ Investigates Role of Firm Heterogeneity in NK transmission
- * Marries NK and Moll models
- * Discussion:
 - * how does MP impact capital misallocation?
 - * how does misallocation impact monetary policy?
- * Comments:
 - * test mechanism directly

Misallocation:

 \star not important at high frequency

Misallocation:

- \star not important at high frequency
- \star capital reallocation about 25% GDP
- \star capital-labor substitution very low at high frequency
- \star distribution of net-worth: slow moving speed needs excess returns

Misallocation:

- \star not important at high frequency
- \star capital reallocation about 25% GDP
- \star capital-labor substitution very low at high frequency
- \star distribution of net-worth: slow moving speed needs excess returns

In exercises:

* has bite! but why?

» Amplification - Patience Shock

» Key Figures - Rate Shock

Does heterogeneity operate only through capital misallocation?

- ★ maybe amplifies labor wedge?
- ★ maybe impacts capital accumulation?
- ★ maybe impacts expectations?

Could additional channels matter more?

- » New-Keynesian Model
 - * Autonomous Euler Equation+Phillips Curve:

$$\frac{\dot{C}}{C} = \frac{i_t - \pi_t - \rho}{\sigma}$$
$$\dot{\pi}_t = \kappa \cdot outputgap + \rho\pi$$

- » New-Keynesian Model
 - * Autonomous Euler Equation+Phillips Curve:

$$\frac{\dot{C}}{C} = \frac{i_t - \pi_t - \rho}{\sigma}$$
$$\dot{\pi}_t = \kappa \cdot \text{outputgap} + \rho \pi_t$$

* Background Equations:

$$C_t = L_t$$

* Key (labor wedge) $\begin{pmatrix}
\rho - \frac{\dot{C}_t}{C_t} \\
\pi_t = \frac{\epsilon}{\Theta} \underbrace{\left(\frac{w_t - \epsilon - 1}{\epsilon} \\
\frac{\epsilon}{final markup} + \dot{\pi}_t \\
\frac{1}{C} w_t = L_t^{\nu}
\end{cases}$

- » New-Keynesian Model
 - * (rest of discussion) fixed price
 - * Euler Equation (solved backwards from ss)

$$\frac{\dot{C}}{C} = \frac{i_t - \rho + \epsilon_t}{\sigma}$$

* Adjustment through labor wedge:

$$\underbrace{w_t}_{ ext{labor wedge}} = C_t^{1+1/
u}$$

» w/ Capital + Inelastic Labor Supply

- * Euler Equation+
- * Investment rate and price:

$$rac{\dot{K}}{K} = oldsymbol{\iota}, \ \Xi'\left(oldsymbol{\iota}
ight) = oldsymbol{q}$$

* Consumption:

$$C = \underbrace{MPL(K) \cdot L}_{Y} - \underbrace{\iota K}_{I_t}$$

* Non-arbitrage:

$$i_t = \frac{MPK(k) - \delta q + \dot{q}}{q}$$

* adjustment: via ι

» Polar Cases

* Inelastic Labor:

* adjustment through investment

- * Inelastic Capital:
 - \ast adjustment through labor

» Polar Cases

* Inelastic Labor:

* adjustment through investment

- * Inelastic Capital:
 - * adjustment through labor
- * NK model with capital
 - * adjustment through labor and capital

- » Heterogeneity
 - * Firm return on capital

$$\underbrace{\left[\max_{\ell \mid k} m_{t} z_{t}^{\alpha} \left(\ell \mid k\right)^{1-\alpha} - w_{t} \ell \mid k\right]}_{z\varphi(w,m)} k_{t}^{o}$$

» Heterogeneity

* Firm return on capital

$$\underbrace{\left[\max_{\ell \mid k} m_t z_t^{\alpha} \left(\ell \mid k\right)^{1-\alpha} - w_t \ell \mid k\right]}_{z\varphi(w,m)} k_t^{o}$$

* Key:

$$\ell lk = z_t(m_t, w_t)^{1/\alpha} (1-\alpha)^{1/\alpha}$$

* Operational Revenue:

$$\varphi(\mathbf{w}, \mathbf{m}) = \Gamma(\alpha) \cdot \mathbf{m}_t^{1/\alpha} \mathbf{w}_t^{-(1-\alpha)/\alpha}$$

- » Capital Market
 - * Firms have allocated assets k:

$$\pi_{t}(z) k = \max_{\mathbf{k}^{o} \in [0, \gamma k]} \left[z\varphi(w, m) - R_{t} \right] \mathbf{k}^{o} + R_{t}k$$

* Threshold operating firm:

$$z^{*}\varphi\left(w,m\right)=R_{t}$$

* Clearing for capital input:

$$\int_0^\infty kF(k,z^*)\,dk = \int_0^\infty \gamma k\left(1 - F(k,z^*)\right)\,dk$$

* Complication: joint k and z distribution

» My variation...

- \ast Household owns capital stock
- * Household distributes capital
 - * equal amount of capital to every firm
 - * firms trade
 - * distribute profits back

» My variation...

- * Household owns capital stock
- * Household distributes capital
 - * equal amount of capital to every firm
 - * firms trade
 - * distribute profits back

* Market Clearing

$$\mathit{KF}(\mathit{z}^*) = \mathit{K}\gamma\left(1 - \mathit{F}(\mathit{z}^*)\right)$$

* z^* fixed!

- » Rep Firm
 - * Aggregation:

$$C_t = \bar{Z}_t L_t^{1-\alpha}$$

» Rep Firm

* Aggregation:

$$C_t = \bar{Z}_t L_t^{1-\alpha}$$

* Result:

$$ar{Z}_t \equiv \mathbb{E}\left[z_t | z_t > z_t^*
ight]$$
 $L_t / K_t = ar{Z}_t \left(m_t / w_t
ight)^{1/lpha} \left(1 - lpha
ight)^{1/lpha}$

* Rental rate of capital

 $z^{*}\varphi\left(w,m\right)=R_{t}$

- » Aggregate Model
 - * Euler Equation (as in NK model)

- » Aggregate Model
 - * Euler Equation (as in NK model)
 - * Adjustment through labor wedge:

$$w_t$$
 = $\frac{1}{ar{Z}_t^{1/
u}} C_t^{1+1/
u}$

- » Aggregate Model
 - * Euler Equation (as in NK model)
 - * Adjustment through labor wedge:

$$w_t$$
 = $\frac{1}{ar{Z}_t^{1/
u}} C_t^{1+1/
u}$

* *m* determined by:

$$L_t/K_t = \bar{Z}_t \left(\frac{m_t}{w_t} \right)^{1/\alpha} \left(1 - \alpha \right)^{1/\alpha}$$

* Non-arbitrage q

$$i_{t} = \mathbb{E}\left[\pi_{t}\left(z\right)\right]/q + \frac{q}{q} - \delta$$

» Benchmark in Discussion

- * Equivalent representative agent NK model
- * Actual model:
 - * investment
 - \ast but nothing in production block is altered
- * Hence: key object
 - * evolution of firm capital stock:

F(k, z)

* Key question: how does monetary policy affect this object?

* my version, no effect!

» What my version differ?

* In my version:

- * firm distributes profits
- * households allocate capital
- * no force to alter F
- * Distribution of capital moves in paper
 - * households and firms save independently, $F(k, z) = K^F$ and K^H

» Key Mechanism in Paper

- * Akin to standard NK model:
 - MP works by impacting real wages (movement along labor supply)
 - * Firm profits similar pattern:

$$\pi\left(z\right) = \cos \cdot \frac{z_t}{\overline{Z}_t} \frac{L_t}{K_t} \cdot \mathbf{w}_t$$

- Monetary policy shock compresses real profits
 - * firms and household exposed differently
 - * MP compresses distribution of wealth * $\downarrow z^*$

- » Channels: effect of $\downarrow z^*$
 - * First channel: static

* efficiency: $\downarrow z^* \rightarrow \downarrow \bar{Z} + labor wedge amplification$

- * <u>Second channel:</u> investment dynamics
 - * rental rate of capital

 $\downarrow z^{*}\varphi\left(\mathbf{w},\mathbf{m}\right)=R$

* but q determined by:

$$i_t = \mathbb{E}\left[\mathbf{R} \right] / q + rac{\dot{q}}{q} - \delta$$

 \star forward looking effects in NK model

» Comments

- * Isolate static and dynamic mechanisms
 - * static: source compression of firm profit distribution (test this!)
 - * dynamic: linked to lower R
 - * regressions in paper:
 - $\ast~$ Investment can differ \rightarrow adjustment costs at individual level

» Comments

* Isolate static and dynamic mechanisms

- * static: source compression of firm profit distribution (test this!)
- * dynamic: linked to lower R
- * regressions in paper:
 - $\ast~$ Investment can differ \rightarrow adjustment costs at individual level

- * Quantitatively: investment seems driver, not TFP!
- * Verify claim:
 - * static mechanism: amplified by Frisch elasticity+labor share
 - dynamics: impact on investment (study fixed K benchmark)

» Comment - Firm Flows

* Still feel the model needs to reconcile:

- * between firms: capital flows
- * within firms: across time
- * out of firm: household reallocation of profits
- * quantitatively realistic?

» Comment - Firm Flows

* Still feel the model needs to reconcile:

- * between firms: capital flows
- * within firms: across time
- * out of firm: household reallocation of profits
- * quantitatively realistic?
- * Labor market
 - * mobile across firms (J2J transitions)?
 - * but business cycle mechanism is outflow from labor market
 - * labor allocated to zero productivity

» Comment - Firm Flows

* Still feel the model needs to reconcile:

- * between firms: capital flows
- * within firms: across time
- * out of firm: household reallocation of profits
- * quantitatively realistic?
- * Labor market
 - * mobile across firms (J2J transitions)?
 - * but business cycle mechanism is outflow from labor market
 - * labor allocated to zero productivity
- * Quant channel distortion of investment:
 - * is R or i what matters
 - * is mechanism feasible