Dynamic Asset-Backed Security Design

Discussion of Ozdenoren, Yuan, Zhang

by Saki Bigio (UCLA) on May 27, 2021

Introduction

Comment: view paper as static security design w/ long-lived assets
 dynamic security in the spirit of dynamic contracts

> Overview

- Comment: view paper as static security design w/ long-lived assets
 dynamic security in the spirit of dynamic contracts
- * Beautiful Economics
 - * feedback: future prices to extent of asymmetric information
- * Discussion
 - * simplify/clarify model
 - * discuss features

> Paper

* Models of private information in financial market:

Market Structure \ Security	One Period	Long-Lived
Spot Market	Akerlof '71	This paper
Security Design	DeMarzo-Duffie '00	This paper

* Embedded funding friction

- * Kiyotaki & Moore, Kurlat, Bigio
- \ast investigate stability when asset is long-lived
- * market structure

Simplified Model

> Core Model

* Holmstrom-Tirole notation

> Core Model

- * Holmstrom-Tirole notation
- * Population
 - * entrepreneur: linear U, long-lived discount β , specialist,
 - * investor: linear U, live one period, OLG, deep pocket
- * Asset

> Core Model

- * Holmstrom-Tirole notation
- * Population
 - * entrepreneur: linear U, long-lived discount β , specialist,
 - * investor: linear U, live one period, OLG, deep pocket
- * Asset
 - * Lucas tree
 - * State: $Q \in \{L, H\}$
 - * Fruit: s(H) > s(L)
 - * Symmetric Markov chain:

$$P = \left[\begin{array}{cc} p & 1-p \\ 1-p & p \end{array} \right]$$

* Unconditional prob: 1/2

> Timing + Information

* Market design

* once at time 0

> Timing + Information

- * Market design
 - * once at time 0

* Each period *t*, two stages

- * contracting stage
 - * matched
 - * agents can opt out
 - * entrepreneur: exploits private information
- * settlement, resell
 - * investor paid
 - * if ends with collateral, resells at spot market

> Timing + Information

- * Market design
 - \ast once at time 0

* Each period *t*, two stages

- * contracting stage
 - * matched
 - * agents can opt out
 - * entrepreneur: exploits private information
- * settlement, resell
 - investor paid
 - * if ends with collateral, resells at spot market
- Investment opportunity
 - * great return $\rho > 1$
 - *~ but not too much, $\rho<2~$

> Spot - Short Lived

Market Structure \ Security	One Period	Long-Lived
Spot Market	Akerlof '71	This paper
Security Design	DeMarzo-Duffie '00	This paper

> Classic Akerlof

- * Assume $\beta = 0$
- * In a pooling equilibrium
- * Good asset sold if:

$$\rho \mathbb{E}\left[\mathbf{s}\right] - \mathbf{s}\left(\mathbf{H}\right) > 0$$

- Otherwise, market unravels (not separates)
 - * single "static" equilibrium
 - * depends on "information sensitivity"

> Spot - Short Lived

Market Structure \ Security	One Period	Long-Lived
Spot Market	Akerlof '71	This paper
Security Design	DeMarzo-Duffie '00	This paper

> Classic Akerlof + long-lived asset

- $* \ \, {\rm Assume} \ \, \beta > 0$
- * Asset price is

 $\phi(Q)$

* Good asset sold if:

$$\rho \mathbb{E}\left[\mathbf{s} + \phi\right] > \mathbf{s}\left(\mathbf{H}\right) + \phi\left(\mathbf{H}\right)$$

* Re-arranging condition:

$$\rho \underbrace{\left(\mathbb{E}\left[s\right] - s\left(H\right)\right)}_{\text{Algebra f condition}} + \rho \underbrace{\left(\mathbb{E}\left[\phi\right] - \phi\left(H\right)\right)}_{\text{arise condition}} > 0$$

> Classic Akerlof + long-lived asset

Observation

* Akerlof condition may fail

$$\rho\underbrace{\left(\mathbb{E}\left[\mathbf{s}\right]-\mathbf{s}\left(\mathbf{H}\right)\right)}_{\mathbf{v}}<0$$

Akerlof condition

* still, prices may sustain equilibrium if:

$$\rho\underbrace{\left(\mathbb{E}\left[\phi\right]-\phi\left(H\right)\right)}_{i} >> 0$$

price condition

* Multiplicity: strategic complementarity

> long-lived asset

Strategic complementarity

- * If market illiquid:
 - * Lucas price:

$$\phi\left(\boldsymbol{Q}\right) = \mathbb{E}\left[\sum_{t} \beta^{t} \boldsymbol{s}_{+t} | \boldsymbol{Q}\right]$$

- * high information sensitivity \Longrightarrow illiquid market
- If market liquid:
 - * conjecture constant resale price

$$\phi = \frac{\overbrace{\mathcal{E}[\mathbf{s}]}^{\mathsf{fund}} + \overbrace{(\rho-1)\phi}^{\mathsf{buy sell}}}{1-\beta}$$

* no information sensitivity \Longrightarrow liquid market

> Classic Akerlof + long-lived asset

Compstats:

* Recall need

 $\rho\left(\mathbb{E}\left[\phi\right] - \phi\left(H\right)\right) >> 0$

price condition

- * Higher β helps scale up price relative to s
- * Persistence *p* creates greater sensitivity

> Spot - Short Lived

Market Structure \ Security	One Period	Long-Lived
Spot Market	Akerlof '71	This paper
Security Design	DeMarzo-Duffie '00	This paper

* Market unravels if Akerlof condition fails

$$\rho \mathbb{E}[s] - s(H) < 0 \Longrightarrow s(L) < \underbrace{\Lambda}_{\equiv \left(\frac{2}{\rho} - 1\right)} s(H)$$

* Market unravels if Akerlof condition fails

$$\rho \mathbb{E}[s] - s(H) < 0 \Longrightarrow s(L) < \underbrace{\Lambda}_{\equiv \left(\frac{2}{\rho} - 1\right)} s(H)$$

* This sucks!

* lose ability to invest in good state

- \ast Clever idea: security design
 - * issue debt D
 - * default if s < D

- * Clever idea: security design
 - * issue debt D
 - * default if s < D
- Collateralized
 - * Akerlof condition:

* sold at:

* Self financed:

$$q = \frac{1}{2} (s(L) + D)$$
$$D < s(H)$$

 $s(L) = \Lambda \cdot D$

 $\underline{s(L)} = \underline{s(L)}$

> Spot - Short Lived

Market Structure \ Security	One Period	Long-Lived
Spot Market	Akerlof '71	This paper
Security Design	DeMarzo-Duffie '00	This paper

* Condition :

 $s(L) + \phi(L) < \Lambda(s(H) + \phi(H))$

* Condition :

 $s(L) + \phi(L) < \Lambda(s(H) + \phi(H))$

- * Same principle
- * Uniqueness
 - * Always issue debt
 - * Constant price: q
 - * Per unit return is unique

$$\phi = \frac{\rho q}{1 - \beta}$$

Comments

> Some Comments

* Comment 1:

- * security design assumes ex-ante commitment
- * fine only in some market
- * Bigio-Shi (2020) with ex-post competition
 - * curious to see dynamics there
- * Comment 2:
 - * Message here: securitization reduces volatility
 - * but Brunnermeier-Pedersen
 - * asset-backed securities
 - * re-hypothecation: generates large spirals
 - * amplification of aggregate shocks
 - * tail events provoked by leverage
 - $\ast\;$ curious to know if you could build both