Discussion of "Beyond Hulten's Theorem"
 by Baqaee and Farhi

Saki Bigio ${ }^{1}$
${ }^{1}$ UCLA
U Chicago, 2017

Why is this paper important?
Neglect of Production Theory
Theorem
I-O matrix Ω, unit CES everywere. Then,

$$
G D P=\bar{z}(A) l^{\bar{\eta}},
$$

and

$$
\bar{z}(\mathbf{A}) \equiv \exp \{\lambda \log \mathbf{A}\}
$$

Theorem

Any 10 with CRS

- first-order effects of A_{i} coincide with λ_{i}
- Furtheremore, λ_{i} is vector of relative sales

Why is this paper important?
Neglect of Production Theory
Theorem
I-O matrix Ω, unit CES everywere. Then,

$$
G D P=\bar{z}(\mathbf{A}) \ell^{\bar{\eta}},
$$

and

$$
\begin{aligned}
\bar{z}(\mathbf{A}) & \equiv \exp \{\lambda \log \mathbf{A}\} \\
\lambda & \equiv\left(\mathbf{b}^{\prime}[\mathbf{1}-\Omega]^{-1}\right)
\end{aligned}
$$

Theorem

Anv 10 with CRS

- first-order effects of A_{i} coincide with λ_{i}
- Furtheremore, λ_{i} is vector of relative sales

Why is this paper important?
Neglect of Production Theory

Theorem

I-O matrix Ω, unit CES everywere. Then,

$$
G D P=\bar{z}(\mathbf{A}) \ell^{\bar{\eta}}
$$

and

$$
\begin{aligned}
\bar{z}(\mathbf{A}) & \equiv \exp \{\lambda \log \mathbf{A}\} \\
\lambda & \equiv\left(\mathbf{b}^{\prime}[\mathbf{1}-\Omega]^{-1}\right)
\end{aligned}
$$

Theorem

Any 10 with CRS

- first-order effects of A_{i} coincide with λ_{i}
- Furtheremore, λ_{i} is vector of relative sales

Literature and Motivate the Paper

- Daron, Vasco, Asu, and Ali (ECMA, 2012) and Daron and Ali's (AER, 2016)
- What properties on Ω produce $\lambda_{i}^{\prime s}$ that break classic limit theorems?
- Motivation in Bigio and La'O
- Amplification of shocks to spreads: $\bar{z}(A) \zeta\left(\right.$ Spreadst $\left._{t}\right) \ell^{\eta}$ - No Hulten result for $\zeta\left(\right.$ Spreads $\left._{t}\right)$
- However: "Our theory is, of course, incomplete. Departingfrom perfectly mobile labor or relaxing unit CES will generate more amplication."
- others in Macro and Trade share the same concern.

Literature and Motivate the Paper

- Daron, Vasco, Asu, and Ali (ECMA, 2012) and Daron and Ali's (AER, 2016)
- What properties on Ω produce $\lambda_{i}^{\prime s}$ that break classic limit theorems?
- Motivation in Bigio and La'O
- Amplification of shocks to spreads: $\bar{z}(\mathbf{A}) \zeta\left(\right.$ Spreads $\left._{t}\right) \ell^{\bar{\eta}}$
- No Hulten result for $\zeta\left(\right.$ Spreads $\left._{t}\right)$
- However: '"Our theory is, of course, incomplete...

Departingfrom perfectly mobile labor or relaxing unit CES will generate more amplication."

- others in Macro and Trade share the same concern...
- \mathscr{C} commodity aggregator
- Individual production function:

$$
y_{i}=A_{i} F_{i}(I, x) \text { (in vector form) }
$$

- Define the "Macro Elasticity":

$$
\frac{1}{\rho_{i j}} \equiv \frac{d \log \left(C_{i} / C_{j}\right)}{d \log \left(A_{i}\right)}=1-\frac{d \log \left(\lambda_{i} / \lambda_{j}\right)}{d \log \left(A_{i}\right)}
$$

Key Formula in the Paper

Second Order Expansion:

$$
C \simeq \underbrace{\operatorname{diag}(\lambda) \log (A)}+M(\log (A))^{2}
$$

With diagonal terms:

$$
M_{i}=\frac{\lambda_{i}}{\xi} \sum_{j \neq i} \lambda_{j}\left(1-\frac{1}{\rho_{i j}}\right)+\lambda_{i} \frac{d \log \xi}{d \log A_{i}}
$$

Implication:

- Non-linearities increase as $\rho \rightarrow 0$
- Homogeneity $\frac{d \log \xi}{d \log A_{i}}=0$
- Also, linear term is:

$$
\frac{\lambda_{i}}{\xi} \sum_{j \neq i} \lambda_{j} \frac{\operatorname{dlog}\left(\lambda_{i} / \lambda_{j}\right)}{\operatorname{dlog}\left(A_{i}\right)}
$$

- Skip off-diagonal terms
－ 2 Challanges：
A from non－parametric micro to macro
B from parametric micro to macro
－Theorem（above）provides a path for A（in paper）
－B provides intuition，but we need examples
－Challange structure in the paper：
－CES Household with σ and b_{k}
－CES labor－materials aggregator：θ_{i} and a_{k}
－Each sector has associated Labor and Intermediates Supplier
－Labor is Cobb－Douglass in fixed factors and mobile labors β_{k}
－CES ε_{k} and ω_{k}
－Question：
－Could you pick a notation that is harder to mememorize？
- Challange structure in the paper:
- CES Household with σ and b_{k}
- CES labor-materials aggregator: θ_{i} and a_{k}
- Each sector has associated Labor and Intermediates Supplier
- Labor is Cobb-Douglass in fixed factors and mobile labors β_{k}
- CES ε_{k} and ω_{k}
- Question:
- Could you pick a notation that is harder to mememorize?
- 4 - Highlight Role of Mobility
- No intermediate inputs
- Uniform labor reallocation produce

$$
\rho_{i j}=\frac{\sigma(1-\beta)+\beta}{\sigma(1-\beta)+\beta+(1-\sigma)} ; \lambda_{i}=b_{i}
$$

- 5-Uniform CES $\sigma=\theta_{i}=\varepsilon_{k}$

$$
\rho=\sigma \text { when mobility } \beta=1
$$

$$
\rho=1 /(2-\sigma) \text { when mobility } \beta=0
$$

$$
\lambda_{i}=\text { labor share }
$$

$$
M_{i}=\lambda_{i}\left(1-\lambda_{i}\right)\left(1-\frac{1}{\rho}\right)
$$

- 6 - Multiplier is a classic excercise
- Assume perfect mobility (CRS)
- Take the I-O matrix from the Cobb-Douglass case:

$$
\Omega_{[i j]}=\frac{p_{j} x_{i j}}{p_{i} y_{i}}
$$

and the Leontief Inverse:

$$
\Psi=(1-\Omega)^{-1}
$$

- Think of Ω as a Probability Matrix

$$
\operatorname{COV}_{i}(j, k)=\operatorname{Cov}\left(\Psi_{m j}, \Psi_{m k}\right) \text { under } \Omega_{[i: m]}
$$

- Then:

$$
M_{i}=(\sigma-1) \operatorname{COV}_{b}(i, i)+\sum\left(\theta_{j}-1\right) \operatorname{COV}_{j}(i, i)
$$

- with further generalizetion to DRS-Immobility case.

Comments

－Great Foundational Work
－．．．examples don＇t illustrate role of＂network architecture＂
－the machinery is there，but not the applications
－Questions for the group

C1: Role of "Architecture"?

- Consider two networks and effects of a bottleneck

C1: Role of "Architecture"?

- Consider two networks and effects of a bottleneck

C1: Role of "Architecture"?

- There's info in one of the second order of components:

$$
\sum\left(\theta_{j}-1\right) \operatorname{COV}_{j}(i, i)
$$

- In my example, the effect is going to pop-out in $\operatorname{COV}_{j}(i, i)$
- what archtectures produce high covarinaces?

C2：Strategic Sectors

－The energy example is great！
－Notional View：Leontief at final layer in every final good
－＂Strategic＂industries：food，energy，water，superconductors （indium），super metals（tungstenum）
－What configurations lead to similar notions of strategic？
－Employ sufficient statistics：

$$
\sum\left(\theta_{j}-1\right) \operatorname{Cov}_{j}(i, i)
$$

－What configurations of Ω produce same statistics（symmetric）

C3: When is the Second Order Enough?

- We can solve general network via Negishi's theorem
- When is the second order good? Are higher expansions monotone in second order effects?
- Take Leontief limit (S5): then

$$
M_{i}=\lambda_{i}\left(1-\lambda_{i}\right)(1 / 2)
$$

should effect be larger?

C4: On-Impact vs. Steady State Effect

- These are "new" steady-state effects
- Are there differences when you consider the impact effect?
- does the answer change with CES?
－Paper：import effort to flesh out production theory
－Understand the role of factor mobility，elasticities of substitution
－Still，I would like to see more work on network configurations and interaction CES

