Final Exam
UCLA - 2016
ECON 221C MONETARY ECON III
Saki Bigio

Dear Students,
You have exactly 2.5 hours to finish the two questions of this exam. It's worth 100 points total. The exam seems longer than what it really is. Read questions carefully. It should be a fun problem to work out and hopefully you'll learn as much as I did preparing the exam.

Question 1 is about exchange rates, something we didn't cover in class, you require no knowledge on internatinal macro. I will provide definitions in a way that allows you to solve questions without any knowledge of international macro. Question 2 is about a model we learned in class. It should be easy to solve, since it was part of a problem set to students in another program. You are better trained.

Best wishes and good luck,

Saki

## QUESTION 1-60 points

Some known puzzles in international macro are the following:

1. Feldstein-Horioka: the fact that differences in real returns across countries are persistent and that the current-account takes time to close before those differences vanish.
2. Backus-Smith: that consumption is high when the real exchange rate is high, although consumption is five times less volatile than the realexchange rate.
3. The terms of trade, is three times less volatile than real exchange rate.
4. High interest rates predict appreciations -i.e., there are violations to the uncovered interest rate parity.

This question uses a variation to one of the models used in class to see how far we can go to analyze those puzzles.

The Environment. Consider a single, small economy, populated by entrepreneurs. They are labeled with some identity $j \in[0,1]$. Preferences in this problem are given by the following:

$$
\sum_{t=0}^{\infty} \log \left(c_{t}^{j}\right)
$$

where $c_{t}^{j}$ is the individual's problem. The entrepreneur in the country accumulates physical capital according to the following technology:

$$
k_{t+1}^{j}=i_{t}^{j}+\lambda k_{t}^{j}
$$

where $\lambda$ is a gross depreciation and investment.
Now, we have an additional variable, $a_{t}^{j}$, which I label domestic absorption by the entrepreneur. This variable is given by:

$$
a_{t}^{j}=\left(z_{t}^{j}\right)^{1-v}\left(m_{t}^{j}\right)^{v}
$$

The term $z_{t}^{j}$ are domestic consumption and $m_{t}^{j}$ are imported goods by entrepreneur $j$. The parameter $v$ is a parameter that govern's the preference for foreign consumption.

Absortion is split between domestic consumption and investment:

$$
i_{t}^{j}+c_{t}^{j}=a_{t}^{j}
$$

The budget constraint of each individual entrepreneur is:

$$
q_{t} b_{t}^{j}+z_{t}^{j}+p_{t} m_{t}^{j}=\left(\tilde{k}_{t}^{j}\right)^{\alpha}-r_{t} \hat{k}_{t}^{j}+p_{t} b_{t}^{j}
$$

where $p_{t}$ is the price of imported goods, and $b_{t}^{j}$ is a foreign bond quoted in units of foreign goods. The price $q_{t}$ is a constant price. Finally, $r_{t}$ is the return to each unit of capital in the local economy. We assume that each entrepreneur can either run his own firm or rent capital:

$$
\tilde{k}_{t}^{j}=k_{t}^{j}+\hat{k}_{t}^{j}
$$

so $\hat{k}_{t}^{j}$ is the capital rented from other firms so that $\int_{0}^{1} \hat{k}_{t}^{j} d j=0$ and $\tilde{k}_{t}^{j}$ is the capital operated invididually.

Domestic output is produced according to a decreasing returns to scale technology $\left(\tilde{k}_{t}^{j}\right)^{\alpha}$. Total output in the country is:

$$
Y_{t}=\int_{0}^{1} y_{t}^{j} d j=\int_{0}^{1}\left(\tilde{k}_{t}^{j}\right)^{\alpha} d j
$$

and is split between absortion uses and exports:

$$
\int_{0}^{1} z_{t}^{j} d j+\int_{0}^{1} x_{t}^{j} d j=Y_{t}
$$

Absortion is used to consume and invest where the split is given by:

$$
i_{t}^{j}+c_{t}^{j}=a_{t}^{j} .
$$

The only random variable in this economy is the price of the foreign good, $p_{t}$. In particular, assume that $p_{t}$ follows a geometric random walk with to growth rates:

$$
\log p_{t+1}=\rho \log p_{t}+\varepsilon_{t}^{p}
$$

Where $\varepsilon_{t}^{p} \sim N\left(0, \sigma_{p}\right)$ stands for a normal distribution with parameters $\left(0, \sigma_{p}\right)$. Also, $\rho$ is an autocorrelation. That is, the $\log$ of $p_{t+1}$ is an $\operatorname{AR}(1)$ process.

Definitions: The terms of trade in this economy are given by:

$$
\tau_{t}=p_{t}
$$

because export prices are 1 -consumption of the domestic good is the numeraire.

The domestic price level is:

$$
\bar{p}_{t}=\frac{p_{t}^{v}}{(1-v)^{1-v} \nu^{v}}
$$

Finally, the real exchange rate is:

$$
R E R_{t}=p_{t} / \bar{p}_{t}
$$

Question 1 (20pts). Show that the domestic economy admits a representative household with the following budget constraint:

$$
\frac{q_{t}}{\bar{p}_{t}} b_{t}+k_{t+1}+c_{t}=\left(\frac{r_{t}}{\bar{p}_{t}}+\lambda\right) k_{t}+\frac{p_{t}}{\bar{p}_{t}} b_{t}
$$

Question 2 ( $\mathbf{1 5 p t s )}$. Impose the following borrowing constraint. Each entrepreneur faces the following constraint:

$$
-q b^{\prime} \leq \frac{\gamma}{(1-\gamma)} \bar{p} k^{\prime}
$$

for some parameter $\gamma$. This constraint states that the entrepreneur cannot borrow beyond a multiple of the domestic price of its capital. Derive the corresponding portfolio separation for this problem. Derive a law of motion for capital and debt taking the solution to that portfolio problem as given $\omega$.

Describe the correlation between the real exchange rate and aggregate consumption. How does it vary with $\lambda$ ?

Question 3 (5pts). What is the correlation between terms of trade and real exchange rates:

$$
\bar{p}_{t}=\Upsilon p_{t}^{v}
$$

where $\Upsilon=\left(v^{v}(1-v)^{1-v}\right)^{-1}$. Then, we have that:

$$
\bar{p}_{t}=\Upsilon p_{t}^{v}
$$

How does it vary with $\lambda$ ?
Question 4 - Balance of Payments Identity (15pts). Consider the budgent constraint:

$$
q_{t} b_{t}^{j}+z_{t}^{j}+p_{t} m_{t}^{j}=\left(\tilde{k}_{t}^{j}\right)^{\alpha}-r_{t} \hat{k}_{t}^{j}+p_{t} b_{t}^{j}
$$

Aggregate this constraint and express it as:

$$
\underbrace{\left(B-q_{t-1} B\right)}_{\begin{array}{c}
\text { Factor } \\
\text { Payments }
\end{array}}+\underbrace{X-M}_{\text {Net Export }}=\underbrace{q B^{\prime}-q_{t-1} B}_{\begin{array}{c}
\text { Capital } \\
\text { Account }
\end{array}} .
$$

Describe the correlation between the components of the the current account and the real exchange rate. How does this relation vary with $\lambda$ ?

Violations to the UIP. Violations to the UIP condition imply:

$$
r_{t+1} K_{t+1}=E\left[\frac{\bar{p}_{t+1}}{p_{t}}\right]\left(\frac{1}{q_{t}}-1\right)+\varepsilon_{t}
$$

where $\varepsilon_{t}$ is obtained from the model. Obtain an equation that characterizes violations to the UIP. Is $\varepsilon_{t}$ correlated with $\bar{p}_{t+1}$ ? How does it vary with $\lambda$ ?

## Question 2-Endogenous Liquidity

Consider a problem related to the one studied in class.
Preferences: An entrepreneur features the log preferences and discounts the future at rate $\beta$ :

$$
\sum_{t=0}^{\infty} \beta^{t} \log \left(c_{t}\right)
$$

where $c_{t}$ is consumption, time $t$.
Technology: The agent produces $y_{t}$ consumption units according to: $A\left(h_{t}+k_{t}\right)$ where $A>1$ is TFP and $h_{t}$ an input used at $t$. Producing $h_{t}$ costs one unit of output.

Capital: The entrepreneur starts with $k_{t}$ capital units accumulated from the past. However, capital becomes divisible into a continuum of units $\omega \in[0,1]$. Each differs in the depreciation rate. In particular, each unit is associated with depreciation $\delta(\omega) \equiv \phi_{1}+\phi_{2} \omega$, where $\left(\phi_{1}, \phi_{2}\right)$ are parameters. Entrepreneurs can sell units individually. A sales decision is given by $I[\omega]$. In turn, the entrepreneur can purchase $i^{b}$ so that his capital stock evolves via:

$$
k_{t+1}=i^{b}+k_{t} \int_{0}^{1}(1-I[\omega])(1-\delta(\omega)) d \omega
$$

Cash-in-Advance Restriction: The agent must pay for $h_{t}$ in advance. Hence, he satisfies:

$$
h_{t} \leq m_{t}
$$

where $m_{t}$ is some form of inside money.
Inside Money: Total liquidity is:

$$
m_{t}=\int_{0}^{1} p(\omega) I[\omega] k_{t} d \omega
$$

Budget Constraint: By the end of the period, the budget constraint is:

$$
c_{t}+i_{t}^{b}=A\left(h_{t}+k_{t}\right)+m_{t}-h_{t} .
$$

The corresponding Bellman equation is:

$$
V\left(k_{t}\right)=\max _{\left\{c_{t}, i_{t}^{b}, h_{t}, I[\omega], m_{t}\right\}} \log \left(c_{t}\right)+\beta \log \left(k_{t+1}\right)
$$

subject to:

$$
c_{t}+i_{t}^{b}+h_{t}=A\left(h_{t}+k_{t}\right)+m_{t}
$$

$$
\begin{gathered}
k_{t+1}=i^{b}+k_{t} \int_{0}^{1}(1-I[\omega])(1-\delta(\omega)) d \omega \\
m_{t}=\int_{0}^{1} p(\omega) I[\omega] k_{t} d \omega \\
h_{t} \leq m_{t}
\end{gathered}
$$

Question a (5 points): What does it mean that $p(\omega)=1-\delta(\omega)$ ? How about $p(\omega)=1$ for all $\omega$ ?

Question b (5 points): Solve the Bellman equation corresponding to $p(\omega)=$ $1-\delta(\omega)$.

Question c (10 points): Solve the Bellman equation when $p(\omega)$ is a constant equal to the expected (gross) depreciation per unit sold.

Question d (20 points): What happens with the economy when $\phi_{1}$ is a constant and we increase $\phi_{2}$. Interpret the solution.

