
Notes on Optimal Control
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Goal : Introduce theory of optimal
control

* Derivation of neccesary conditions

* discussion  of sufficiency conditions

a examples
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Value of perturbed Control is :
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Digression - Tnausneesah 't
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There are two dimensions of interest
.
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Sufficiency
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Generators
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* inequality constraints

* Discontinuities
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Hamilton - Jacobi - Bellman
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* In general , we may face other constraints
,

and

may tail to work with This .

* also
,

not we assumed differential : tit
, of

the value function
↳ we shall talk about this issue In the future

* Pleasestudy Acemogbis chapter 7 for
discussion of It,D- , E



Applications
* Consumption - Savings { Ihunmoanthfalth

* Neoclassic Growth ( org )
- Natural nesouvses

* Baumd Inventory Model ( in Homework )
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co µ]→ finite difference methods


