
Notes on Optimal Control



feature * 1

Goal : Introduce theory of optimal
control

* Derivation of neccesary conditions

* discussion  of sufficiency conditions

a examples
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Value of perturbed Control is :
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Digression - Tnausneesah 't
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There are two dimensions of interest
.
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Sufficiency
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Generators
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* inequality constraints

* Discontinuities
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Hamilton - Jacobi - Bellman

sina.pk#Optimality_max

over

- { XCH,yH ) )

W=Vcx,y1=Maxfo%xpc-p+

) . . . st . i=gcx,y )
4,y9

Xo give

=ma× fohxptptlucxiyldttfaltxptstiulxseikldt
[ XIHMLH

=
11

lahayeof variable tests
,

hence
t=s → to

fdtexptpcstsl )UCX#sgYo→)d5

exptpnfokptpsllxs.si/ttsldS

but then
,

by principle of  optimality

Xsts , Yst , gneuIs
as initial

Same as (X*,Y& ) siren Xs condition



hence valve function is :

k× ,
= max S :-, + expats ) Vcx

. ,t )
9 X

, 71

Xo grew

x =gcx.gr)

take solution
,

then

= Yfgyx
,

to?
-

Hexptsp ) - ' lkx
. ,$ ,

+ Yx*s
,

s )
- Yxiol

divide by s

@ @
=

qyfxyp ¥ dt  + expiated

× Vts
,

s )
�3�

+ V ( × oats, AH- X ( ×t.tt

a-



the tern 0 , by Leibnitz 's Rule
,

becomes

Uc x. y )

and �2�
, exptsts ) - expcpxo )
him g-

× V ( Xttsatts )

s→o. tior
of "

Hottie = - p bin

do

EDs→•V(×t+s
 it's ) =f°( × ,t )

and (3)
,

b > total differential
%X++

a ,tts )
- Vcxts ,t ) + K×¢+sF )

- Vcxt ,e )

=D

=P.az +
i

:( X it )
.

bHedingtevms|SVCX )=M{gyUCX,y)tV×9( ×
, att



* In general , we may face other constraints
,

and

may tail to work with This .

* also
,

not we assumed differential : tit
, of

the value function
↳ we shall talk about this issue In the future

* Pleasestudy Acemogbis chapter 7 for
discussion of It,D- , E



Applications
* Consumption - Savings { Ihunmoanthfalth

* Neoclassic Growth ( org )
- Natural nesouvses

* Baumd Inventory Model ( in Homework )
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.  

co µ]→ finite difference methods


