Notes on Optimal Control

Lecture #1 · Goal : introduce theory of optimul control * Derivation of necessary conditions * discussion of sufficiency conditions * Examples

Optimal Control
• Consider
• Consider

$$W(\chi(t), \Im(t)) \equiv Max \int_{0}^{0} \varphi(y(t-\beta t)) U(\chi(t), \Im(t)) dt$$

 $\chi(t), \Im(t), \chi_{T} = \chi_{T}$
Subject to:
 $\chi(t) \equiv \Im(t, \chi(t), \Im(t)) = \chi_{T} \equiv \chi_{T}$
 $\chi(t) \equiv \chi_{T} = \chi_{T} \equiv \chi_{T}$
• Vacational approach assumes things about continuits of
 $\Im(t)$. Optimal Control is more powerful and can be
used to deal with other contraint on $\Im(t)$.
• for now, assume Jultion is included interior and
 $\chi(t) \equiv \chi^{*}(t) = \Im(t) \times \Pi(t)$
 $\chi(t) \equiv \chi^{*}(t) = \chi^{*}(t) + \Sigma \Pi(t)$
 $\chi(t) \equiv \chi^{*}(t), \Im(t) = \chi^{*}(t) + \Sigma \Pi(t)$
 $\chi(t) \equiv \chi^{*}(t), \Im(t) = \chi^{*}(t) + \Sigma \Pi(t)$
 $\chi(t) \equiv \Im(t, \Sigma) \equiv \Im^{*}(t) + \Sigma \Pi(t)$
 $\chi(t) \equiv \Im(t, \Sigma) = \Im^{*}(t) + \Sigma \Pi(t)$

Value of pecturbed Control is: $\mathcal{W}(\varepsilon) \equiv \mathcal{W}(\pi(t,\varepsilon), y(t,\varepsilon))$ = $\int e \times p(-pt) U(\chi(t, \varepsilon), y(t, \varepsilon)) dt$ note that since $9(t, \times (t, \varepsilon), y(t, \varepsilon)) = \dot{x}(t, \varepsilon) = o$ $\mathcal{W}(\varepsilon) = \mathcal{W}(\mathcal{X}(t,\varepsilon), \mathcal{Y}(t,\varepsilon)) + \left[\mathcal{X}(t) \left[\mathcal{Y}(t, \times (t,\varepsilon), \mathcal{Y}(t,\varepsilon)) - \dot{\mathcal{X}} \right] dt$ then, if $\{x^*, y^*\}$ induced solution, $2J'(\varepsilon) = 0$. otherwise, by continuity (show!) solution would be sub optimal. Should hold in Every Direction M(+). - hat me write A(t) as exp(-pt) H(t) Lo change of variable doesn't mathree. - Alas, integrate by parts Recall by tot diff. Hut $\int UV' dt = UV \left[- \int U' v dt \right]$ $\int \dot{\lambda}(t) \dot{X}(t) dt$ thus $\lim_{t\to T} \lambda(t) \times (t) - \lambda(0) \times (0) - \int_{0}^{1} \lambda(t) \times (t) dt$ $\lim_{t \to T} exp(-p^{+}) M(t) \times (t) - M(0) \times (0)$ $-\int_{0}^{T} \dot{\lambda}(t) \times (t) dt$ $\dot{\lambda}(t) = -p \,\lambda(t) + \dot{\mu}(t) e_{\mu} p(-pt)$

Back in W(E) then probution of E $w(\varepsilon) = \int_{0}^{T} e^{x} \rho(-p+)(U(x(t), y(t)) + \mu(t)) (x(t), y(t+)) + (\mu(t) - p\mu(t)) x_{t+1} + \mu(t)) x_{t+1} + \mu(t) + \mu(t$ + exp(-pT)X(T)M(T) - X(0) M(0) taking derivative w.r. +. Σ yields terms like $\frac{2\pi(t, \varepsilon)}{\partial \varepsilon} f - 2\epsilon(\lambda, \gamma)$ this: $W'(\varepsilon) = \int_{0}^{T} e_{x}p(-\rho T) (U_{x} + \mu(t)g_{x} + \mu(t) - \rho M(t)) X(t) dt$ + $C \times p(-\rho T) \mu(T) \frac{\partial X(T)}{\partial \Sigma} - \frac{\partial X(0)}{\partial \Sigma} \mu(0)$ $= \frac{\partial X(0)}{\partial \Sigma} \mu(0)$ + $\int_{-\infty}^{T} \exp(-p_{+})(u_{y} + \mu(+)g) \eta(+) dt$ Since subution is O, and M(f) is any function, and M(f) is anything, a neccessary condition is that $\mathcal{U}_y - \mathcal{M}(+) \mathcal{Y}_y = 0$ Rember HJB Representation $+ \mathcal{D} \mu(t) = \mathcal{U}_{x} + \mu(t) \mathcal{D}_{x} + \dot{\mu}(t)$ this guy $\lim_{t\to T}\int_{0}^{\infty} (-pt) \mu(t) \chi(t) dt = 0$ is called the transversity Con ditlon

Dispession - Transversality Conditions
There are two dimensions of interest.
(a) T finite or infinite
(b)
$$X_{\tau}$$
 interval $(X(T)$ is choice variable)
Sinite T II II
infinite T III II
 $X(T)$ open $X(T)$ siven
Case I TC becomes
 $\frac{\partial X(T)}{\partial t}(T) = 0 - p(T) = 0$
Ceoe II TC becomes
 $p(T) = 0 - p(T) = 0$ for the system, In case I, we use $X(T) = X_T$

Require more work. In panificula Case I & II not erough to aso one, (only additioned huter of lim 5° exp(-pf) µ(+) x(+) dt t - 000 Acepustu's , Consider Growth Hodel w/ log utility hook O Uy - M(+) 9y = = - p M(+)= 1/C(+) NV: Contrev $\begin{array}{c} \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \\ \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \\ \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \end{array} \end{array} \stackrel{(e)}{=} \begin{array}{c} \mathcal{A}_{\mathcal{A}} \\ \mathcal{A}_{\mathcal{A}} \end{array} \stackrel{(e)}{=} \begin{array}{c} \mathcal{A}_{\mathcal{A}} \end{array} \stackrel{(e)}{=} \begin{array}{c} \mathcal{A}_{\mathcal{A}} \\ \mathcal{A}_{\mathcal{A}} \end{array} \stackrel{(e)}{=} \begin{array}{c} \mathcal{A}_{\mathcal{A}} \end{array} \stackrel{(e)}{=} \begin{array}{c} \mathcal{A}_{\mathcal{A}} \\ \mathcal{A}_{\mathcal{A}} \end{array} \stackrel{(e)}{=} \begin{array}{c} \mathcal{A}_{\mathcal{A}} \end{array} \stackrel{(e)}{=} \begin{array}{c}$ exus le we know that solution converges to \$\$. The lin μ(T)= 1/c*; lik κ(T)= k* T-000 then lin $\mu(t) \times (t) = K * / c * and to the total$ (Cxprp1/2 (+) C+) d+ = > Violations are fund elsewhere. (Hulker) * Altched proots sufficiency unclear bounded concave and expended by Kamihigash (ECHO, 2001) Condition is replaced by Acemogelu lim 0xp(-pt)[u+µ(+)g]=0 Kaufihigedi - feitchel lim exp(-p+)[Uy+M(F)gy]X(+) +->00

finally if then. O f, 5 weakly monotona lin exp(-e+) fl(+) ×(1)=. + + → 00 € 13y1, (gx) wiformly downed } Encyh! Lo fails in case of Inna da concht: + (1) $\lim_{t\to\infty} X^*$ **Al** $\lim_{t\to\infty} \frac{9}{x} \rightarrow Couverypt.$ Hamiltonian Define $H(t, x, y) = U(x(t), y(t)) + \mu(t) g(t, x(t), y_{i})$ then, neccessary Conditions are given by Hy=0 <--> Uy+ M(+)9y=0 / + Hx=p/ ~> Ux+µ(+)Sx+ ji=рл H,= x - 9-x=0 transfersulity $\lambda(T) \times (T) = G$ I are I $\lim_{\tau\to\infty} H(\tau,\times(\tau),\gamma(\tau)) = 0$ EN

<u>Sufficiency</u>	
Cases I +II	fix A(+), XX(+), X(+) rolution
Mangasarian	H(+, ×(+), y(+), X(+))
()	itrictly) Concare -D
	×*(+1, y*(+1) is (unique) soluti.
Areas	H (+, ×(+), Y*(+), X(+))
(51	rictly 1 concare -
	*(+), yth is (Unique) solution
· ARALO - Mang	asarian but both useful according
To .×	scenzyle.
· Non negativity	, of A(f) implies
(f,9) (Dutave - Convex - Sufficiency
Generalization,	
* R^) See Kamen &
* Jtate constrain	Schwarty 12
* Contraint:	purt II.
+ inequality court	raint
* Discontinuities	

Bufficiency ce'd Cases III + III T. 7.14 in Acemaylu lim exp(-p+) fl(+) x(+)]=0 E=00 Chien, Aleon sufficiency Extends!

Hamilton - Jacobi - Bellman Peinciple of Optimality max over $W = V(x,y) = \max \int_{\infty}^{\infty} e^{xp(-p+)} \dots \int_{\infty}^{\infty} \frac{f(t), g(t)}{x = g(x,y)}$ = $\max \int_{\infty}^{0} e^{xp(-p+1)} U(x, y) dt + \int_{\infty}^{\infty} e^{xp(-p+1)} U(x_{t}, y_{t}) dt$ $f(t), y(t) = \int_{0}^{0} e^{xp(-p+1)} U(x_{t}, y_{t}) dt$ Chaye of variable t= s+s, have t= s -s 5=0 So exp(-p(δ+5))U(X (+5) Ye+5) d5 Cxp(-p1) (x +5, Y+1) ds but then, by principle of optimality Xots, Yots sinen Xo Same as (XE, YE) siven Xo condition

hence value function is: $V(x) = \max \int_{1}^{\infty} + e_{x,y_1} V(x_{s,+})$ Xo ziven x = g(x, y, t) take Solution, then $= \max_{(x,y)} \int_{0}^{0} +(e \times p(-\Delta p) - 1) V(x_{0}, \Delta) + V(x_{0+\delta}, \Delta) - V(x, 0)$ divide by Δ = max $\int_{0}^{0} \frac{1}{1} dt + e_{x}p(-p,p) - e_{x}p(-p,r,0)$ $\sum_{x,y}^{x,y} \frac{1}{p} = 0$ $\begin{array}{c} & & \times & V(\times_{4}, \delta) \\ \hline & & & & \\ & & & \\ & + & \mathcal{V}(\times_{4}+\delta, \delta+t) - & \times (\times_{4}, t) \\ \end{array}$

the tern (), by Leibnitz's Rule, becomes U(x,y) and (2), <u>exp(-pt) - exp(-pxo)</u> * V(x++01++2) by $\partial_{t}^{\mu\nu}$ $\partial_{t}^{\mu\nu}$ = $-\rho \lim_{\Delta \to 0} \gamma(x_{t+\delta}, t+\delta) = \rho \nabla(x, t)$ and (3), by total differential V(X++0, ++4) - V(x+0, +) + V(x+0, +) - V(x+, +) 4 D $= \frac{\sqrt{\partial x}}{\sqrt{\partial t}} + \frac{\sqrt{\partial x}}{\sqrt{\partial t}} + \frac{\sqrt{\partial x}}{\sqrt{\partial t}}$ 9(x,1). Collecting terms $\mathcal{P}V(x) = \max_{\{x,y\}} \mathcal{U}(x,y) + \mathcal{V}_{x} \mathcal{G}(x,y) + \mathcal{V}_{x}$

* In general, we may face other contraints, and may fuil to work with this. * Alas, not we assumed differentiability of the value function Howe shall telk about this issue in the future * Please study Acemoglu's chapter 2 for Obscussion of 3, D, C

Applications * Consumption-Savings {- human wealth - no HW * Neoclassic Growth (DRS) * Baund Inventory Model (in Honework) HJB Approach | Hamiltonian Equat] as in class The finite difference methods