
Part I

Neoclassical Growth

"If God had meant there to be more than two factors of production, He would have made it easier

for us to draw three-dimensional diagrams."
Robert Solow

1 The Model of Ramsey Solow and Swan - Why 60 Years

after?

This course is about theories of the driving forces behind economic growth. A starting point are

the classical answers given by economists. From that benchmark, we can move on and ask what

could go wrong with that model to understand the lack of growth.

We begin our lectures with the study of the famous Solow-Swan Model of Economic Growth

which is essentially a rediscovery of a richer model written earlier by Frank P. Ramsey in 1928. There

are many reasons to study this 60 year-old model. Many things have changed since the beginning

of the cold war. What technologies were available then? How “globalized” was the economy of the

50’s as compared to the economy today? Yet to begin with, this model is still a useful benchmark

to study growth within and between countries and along time. It is a benchmark in the sense that

it seems to work pretty well to explain growth at least in industrialized countries in long horizons.

As we shall see along the lectures, it does not apply well in contexts in which its assumptions clearly

fail. Solow himself pointed out this fact, but because it does fit several economies well, it is useful

as a guidance for economists to detect what is it that might not work in economies that don’t

grow. For example, Lucas’s model of human capital (1988) accumulation, precisely asks why poor

countries can’t grow, and explains this question through the lack of human capital. Substantial

empirical evidence followed. We will discuss these theories along our course.

Other than the model itself, Robert Solow’s contribution was to realize that the model enables

a decomposition of the sources of economic growth which is a useful analytical tool. Is it that

an economy grows because it employs more resources, or does it grow because it produces more

and better goods with the same amount of resources? This tool allows us to make important

predictions on long-run growth. Finally, Solow’s model has had an substantial impact on the

policies of governments and the World Bank. Therefore, it has had an enormous role on the shape

of things today.

1



1.1 The Kaldor Facts

We want a theory that is capable of replicating some stylized facts of economic growth. Economist

Nicholas Kaldor summarized these facts in the fifties. These were his findings:

1. That GDP per capita grows at a constant rate

2. That capital per worker grows over time

3. That the capital/output ratio is constant

4. That GDP share of capital and labor is constant over time

5. That the return on capital is constant

6. That real wage grows over time

These facts hold well in developed economies. However, recent research suggests that these facts

may not be as robust as we once thought. In particular, there are some signs that growth is slowing

down in developed economies —item 1. Also, there’s evidence that the return on capital is falling

and that share of GDP that goes to workers is falling. I will discuss this in more detail later.

2 The Neoclassical Core

The model is characterized by 3 equations that link capital, labor and technology with income,

consumption and investment.

Aggregate Production (Flow Equation). The first equation states that output Yt, is

produced through some technological process F and two factors, capital Kt, and labor Lt. We

describe this by the equation:

Yt = AtF (Kt, Lt) (1)

where At is a parameter that scales production and we call technology. The assumptions of the

neoclassical production are the following: First, is satisfies constant returns to scale, or what authors

like Barro and Sala-i-Martin call the replicability. This is intuitive because it means that a factory

that doubles its capital and labor inputs will double production. Mathematically, constant returns

to scale in every input (CRS) means that for any λ > 0 the following holds:

λF (K,L) = F (λK, λL)

Thanks to CRS, we can define output per worker or per unit of labor as

y =
Y

L
= Af (k) (2)
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where k = K/L is capital per worker.1

Question. Show that

∂Y

∂K
= Af ′ (k) (3)

∂Y

∂L
= Af (k)− kAf ′ (k) (4)

In addition, the neoclassical production function presents diminishing returns to scale in both

inputs holding fixed the other. This property is also intuitive because it says that, for the same

amount of machines, incrementing the number of workers will increase output, but this effect is

decreasing in the amount of the increment. It is a special case of a more general technology that

we may discuss later called the constant elasticity of substitution.

This assumption means that output is increasing with inputs:

∂F

∂K
≡ FK > 0;

∂F

∂L
≡ FL > 0

However, there are decreasing returns in each individual input:

∂2F

∂K2
≡ FKK < 0;

∂2F

∂L2
≡ FLL < 0

And what are called Inada Conditions:

lim
K→0

FK = lim
L→0

FL =∞

lim
K→∞

FK = lim
L→∞

FL = 0.

Question. Show that the assumptions on F imply f ′ (k) > 0 and f ′′ (k) < 0

Question. Show that f(k)
k

is decreasing with k

Question. Show that
∂Y

∂K
K +

∂Y

∂L
L = Y (5)

This is called “Euler Equation” and is an implication of CRS.

Capital Accumulation (Stock Equation). A second equation tells us how capital evolves

over time. The stock equation simply summarizes the fact that capital tomorrow is today’s capital

minus a fraction that depreciates (δ) and plus today’s investment It:

Kt+1 = Kt − δKt + It. (6)

Capital at t+1 will be used in production tomorrow.

Aggregate Demand (Definition). Finally, we use the aggregate demand identity. It states

1This follows from CRS, because Y
L = A

LF (K,L) = AF (KL , 1). Then, y = AF (k, 1) ≡ Af(k)
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that production will be distributed among whatever we consume Ct and whatever we invest:

Yt = Ct + It. (7)

These are the three fundamental equations.

3 The Solow Model as a Special Case of Neoclassical Growth

Virtually all modern neoclassical growth models have this set of equations as their backbone. They

differ only in how the model is closed: notice there are fewer equations than unknowns. Solow’s

original 1956 paper discusses several variants of the model we presented above.

First, we specify how technology and the endowment that forms the labor supply move over

time. These are exogenous.

Exogenous Growth Rates. We assume that technology and labor supply follow the following

laws of motion.

At+1 = (1 + xt)At and (8)

Lt+1 = (1 + nt)Lt.

To solve for the model, we need to impose some structure on the production function. The

referential production function is the Cobb-Douglas which takes the name after a U.S. Senator,

(Douglas), who assigned a Mathematician, (Cobb) the task of finding a good approximation to

the "production function" of U.S. firms. This production function is also called the neoclassical

production function.

Cobb-Douglas Production. The production function takes the following form:

F (Kt, Lt) ≡ Kα
t L

(1−α)
t . (9)

Does this production function seem reasonable? Why did Cobb and Douglas think it was a

good approximation. This production function has some nice or desirable properties that seem

reasonable from an intuitive perspective. Figure 1 gives a 3-D graphic representation of the Cobb-

Douglas production function. The x- and y-axis represent capital and labor input respectively, and

the z-axis represents output. We can see that both inputs have positive marginal product, while

the marginal product of each input is decreasing if holding the other input fixed. This can also be

seen from the convex isoquants where output is kept fixed.

The final piece of the model requires to find the split of output into consumption and investment.

Savings Rate. We denote by s, a constant savings rate —the fraction of output devoted to

investment. This yields:
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Figure 1: The Cobb-Douglas Production Function

It = sYt = sAtF (Kt, Lt) . (10)

This equation differs from the way we think investment is determined in modern models. Thus,

using the aggregate demand identity, we also have that:

Ct = (1− s)AtF (Kt, Lt) .

The Solution. The solution to the model consists of finding a path for capital and consumption

given primitives such as an initial capital K0, and some process for the technology parameters and

the growth rate of population. This is called the growth path of output. Formally, we are looking

for an equilibrium:

Definition. An equilibrium growth path in this economy consists of a sequence for quantities

{Kt, Ct, It} from t = 0 to t →∞ such that, given an initial level K (0), capital satisfies the law of

motion (6), investment is given by (10) and output is given by (1) and (7) also holds.

This solution is found by constructing a fundamental equation where we replace the postulated

investment rule into the law of motion for capital accumulation:

Kt+1 = Kt − δKt + sAtF (Kt, Lt) .
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Definition. A steady-state equilibrium are values {Kss, Css, Iss} for which such that, given

an initial level K (0), variables satisfies (6), investment is given by (10) and output is given by (1)

and (7) and capital does not grow.

Finally, there’s the concept of a balanced growth path.

Definition. A balanced growth path is an equilibrium growth path in which all variables

grow at the same rate.

3.1 Modern versions of Neoclassical growth

Solow wrote his work borrowing from the classic Keynesian literature that postulated a linear

relationship between output and investment. This relationship is problematic for two reasons.

First, there’s no idea of what determines the savings rate. Why does the saver save to begin with?

Second, this relationship also implies that investment is less volatile than output, something that

is not true in the data.

Modern macroeconomics has dealt with this problem by saying that consumption follows from

the optimization decisions of agents. That is, the consumer’s decision to save is also modelled not

as an additional equation to the system above but posed as a problem. Standard theories relate

consumption to their wealth —not their income. One typical example is to postulate that agents

feature log utility. Then, consumption is given by:

Ct = (1− β) (AtF (Kt, Lt) + (1− δ)Kt) .

Here, β represents the household’s time discount factor —think of it as 1 minus the real interest

rate. If we make this assumption, notice that:

It = Yt − Ct = βAtF (Kt, Lt)− (1− β) (1− δ)Kt.

Then, in the law of motion for capital we obtain:

Kt+1 = (1− δ)Kt + βAtF (Kt, Lt)− (1− β) (1− δ)Kt.

= βAtF (Kt, Lt) + β (1− δ)Kt.

Thus, this is almost the same rule as in the original solow model if w set β = s. They only thing

that would change is that β (1− δ) is actually only (1− δ) in the original version. Thus, if we have

a value for depreciation in the first version, δ, in the modern version we can find some δ̄ that makes

both models identical.
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β
(
1− δ̄

)
= (1− δ)

When performing a growth accounting exercise, all we need to do is relate one representation to

the other. Now, although investment is more volatile in the modern version, because we postulated

a different equation, both models have the same predictions for the long run. Thus, we’ll work with

the original setup.

4 Growth Dynamics

We now look at the dynamics of output per worker, or GDP per capita. We first set xt = nt = 0.

Thus, Lt = Lt+1 and At = At+1. That is, we let Lt = L0 = Lss and At = A0 = Ass where Lss and

Ass are constants. Let’s call capital per worker kt ≡ Kt/Lt. Then dividing both sides of 6 by Lss

and replacing in 10 yields:

kt+1 = (1− δ) Kt

Lt
+
sAtK

α
t L

1−α
t

Lt

= (1− δ) kt +
sAtK

α
t L

1−α
t

Lαt L
1−α
t

= (1− δ) kt + sAtk
α
t .

Note that kt+1 = Kt+1/Lt+1 but since Lt+1 = Lt, we have that kt+1 = Kt+1/Lt. In other cases, we

cannot make this substitution.

Thus, if we compute the gross growth of machines per worker we have:

kt+1 − kt = sAtk
α
t − δkt (11)

Note that if we have an initial value of k0 we can fully characterize the evolution of capital. We

could insert this equation in excel and we would be good to go. The following diagram plots these

functions. The blue line is the gross investment as a function of capital per capita, and the green

line is depreciation. The gap between these two lines is net investment at any level of kt. We can

find steady state capital per capita where the gross investment function meets net depreciation. If

capital per capita falls behind the steady state level, capital accumulates and per capita capital

moves towards the steady state. If capital per capita starts above the steady state level, capital

de-cumulates and per capita capital again moves towards the steady state.
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Figure 2: The Solow diagram

Figure 3: The Solow diagram
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Another way to look at this process is to plot net investment as in Figure 4, where the steady

state is reached when net investment is zero. Changes in capital per capita are positive below the

steady state while they are negative above the steady state. 2

∆k

klow0 kss khigh0 k

∆k = sy− δk

Figure 4: Change in capital per capita

How does the evolution of capital look over time? Figure 5 plots that for two initial values of

capital: high and low. If k0 starts from below the steady state, it approaches the steady state from

below. If k0 starts from above the steady state, it decreases to the steady state level over time.

The convergence to steady state is initially fast but slows down over time. This can be seen from

Figure 6, where we plot the gross investment and depreciation as a percentage of capital per capita.

The equilibrium is reached when the ratio of gross investment to capital ( sy
k

, the blue line) equals

depreciation rate (the green line). The gap between these two lines is the rate of change of capital

per capita. We can see that the change is fast when far away from the steady state but slows down

when reaching the steady state.

The convergence to the unique steady state kss can be shown formally with the use of Monotone

Convergence Theorem. It is the results from Real Analysis which says that the limit of monotonic

sequence of real numbers exists if and only if the sequence is bounded. We can apply this theorem

to the sequence of capital stock values {kt}∞t=0 implied by equation 11 and initial value k0. Since

monotonic sequence can be either increasing or decreasing, there are two relevant cases, first when

2Notice that in both Figures 2 and 4, k = 0 is a rather uninteresting steady state that we don’t consider in our
analysis.
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initial value of capital is below steady state and second when it is above steady state. We will prove

convergence for k0 < kss as proofs for the two cases are very similar.

First we need to show that {kt}∞t=0 is an increasing sequence. Notice that the right-hand-side of

equation 11 is strictly positive (also see Figure 4) as long as k0 < kss. But the right-hand-side of

11 is equal to change in capital per capita, therefore positiveness of it means k1 > k0. By induction

(i.e. applying the same argument for all future dates), this is also true for all subsequent values

k2, k3, ..., that is:k0 < k1 < k2 < k3 < ... . Hence, {kt}∞t=0 is strictly increasing.

Now we need to show that it is also bounded. Note that expression sAkαt + (1− δ)kt is a strictly

increasing function of kt. Then for any k0 < kss

k1 = sAkα0 + (1− δ)k0 < sAkαss + (1− δ)kss = kss

So k0 < kss implies that k1 < kss. By induction, this is also true for all subsequent kt, and thus

the whole sequence {kt}∞t=0 is bounded by kss.

By Monotone Convergence Theorem, we proved that the limit of {kt}∞t=0 exists, i.e. capital stock

converges to its steady state.

klow0

kss

khigh0

k

time

Figure 5: Evolution of Capital Through Time
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Figure 6: Rate of change of capital per capita

4.1 What is the Steady State of the Model?

By definition, in a steady state we must have the condition that the variables determined by the

model do not growth. A steady state for the model is a point in which capital per capita is not

growing kt+1 = kt. This will hold for some kss. That is, the point at which the right hand side of

(11) is 0:

0 = sAssk
α
ss − δkss

We can clear kss from this equation to obtain:

kss =

(
sAss
δ

) 1
1−α

. (12)

Thus, kss represents the point at which capital per capita does not grow any more. A fundamental

property of the neoclassical model is that starting from any point below kt < kss, the model predicts

that capital per capita will eventually attain kss as time approaches to infinity. The reason is that

for any value above kss, the capital accumulation equation 11 will predict a decline in capital. The

converse is also true. So the theory predicts that economies with kt less than kss will grow while

the others decline.

What is then output per capita of steady state? Define yt ≡ Yt
Lt

as output per capita, or GDP
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per capita. From equation 1, when dividing both sides by Lt we obtain:

yt = Atk
α
t . (13)

Given this result, we can conclude that capital per capita determines output or gdp per capita.

What would be the steady-state value of GDP per capita? We just replace 12 into 13 and we

obtain:

yss = At

(
sAt
δ

) α
1−α

= A
1

1−α
t

(s
δ

) α
1−α

= A
1

1−α
ss

(s
δ

) α
1−α

Returning to the Kaldor facts, this version is inconsistent with the most salient of the facts: stable-

growth! Since Ass is a constant, output per worker does not grow!

4.2 The Model’s Predictions (Steady-State Comparative Statics)

As we mentioned, the main prediction of the model is that the economy will not grow in the long

run above the steady state as long as the assumptions remain constant. As plain vanilla as it is,

the model predicts that output per capita is an increasing function of the savings rate. Renowned

economists such as Jeffrey Sachs support the idea that higher savings rate may support growth.

Countries like China have policies geared towards high savings rates.

On the other hand, the depreciation rate δ also plays a role. Depreciation of the same technology

may be associated with a harsh environment such as humidity or can be high in some periods if a

country experiences a war or a natural disaster.

The Golden Rule. But we really don’t care for output per capita, unless, as we read from Paul

Krugman’s the “Truth of Asia’s Miracle”, we are a former Soviet dictator interested in production

power rather than welfare. We care more about consumption per capita ct ≡ Ct
Yt

which we can easily

back out from production per capita:

c∗ = (1− s)A
1

1−α
ss

(s
δ

) α
1−α

and therefore it is not clear whether savings increase steady state consumption in the future.

The “maximal” steady-state value of consumption can be obtained by optimizing over the savings

rate. We take the derivative of ct with respect to the savings rate s and set this to 0:

∂c∗/∂s = −A
1

1−α
ss

(s
δ

) α
1−α

+
α

1− α (1− s)A
1

1−α
ss

(
1

δ

) α
1−α

(s)
α

1−α−1 = 0
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rearranging this equation yields:

s =
α

1− α (1− s)

which can further be simplified to:

s = α.

So the "best" savings rate is not 1, but far from it, it should be α. The term α is also the factor

share of capital, that is, the share of output that can be attributed to capital. This result has

led economists such as Alwyn Young to conclude that many East Asian economies were growing

artificially fast through incredible investment rates. The result also shows that it is not reasonable

to try to achieve growth through incrementing the savings rate above certain levels.

5 Exact Growth Dynamics

So far, we used equation (11) to talk about the evolution of the growth of capital. There is no

known solution to the question: given ko and (11), for what t will kt by at most x% away from

steady state. However, if we use the ∆ time intervals that we learned in the preliminary version,

we can obtain a solution. Observe that if we substitute one time period for ∆, and we scale s and

δ by ∆, we obtain:

kt+∆ − kt = s∆Akαt − δ∆kt.

Then, dividing both sides by ∆ yields:

kt+∆ − kt
∆

= sAkαt − δkt.

Taking limits on both sides produces the following first-order differential equation:

k̇t = sAkαt − δkt.

In the previous notes, we had already solved this equation. It’s a matter of replacing the solution

here as well.

kt =

[
sA

δ
+

(
k1−α

0 − sA

δ

)
exp (− (1− α) δt)

] 1
1−α

.

What happens as t → ∞? Does this solution coincide with the solution when time intervals were

unit? A little inspection of the above equation and equation 11 makes it obvious that a continuous

time analog of Figure 2 should be identical to that figure. Figure 7 plots the capital dynamics for

the continuous time case. It also looks identical to Figure 5.
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Figure 7: Capital dynamics in continuous time

Question. Suppose an economy starts at k0 = 0.5kss. How long will it take the economy to be

1% away from steady state? How does your answer relate to δ and (1− α)? Now assume δ = 0.05

and α = 1/3. What is the actual number?

Question. Suppose you are an investor who cares about computing growth in Haiti. Haiti

suffered a devastating earthquake in 2008. Do you expect Haiti to grow faster? Use the neoclassical

growth model to make that claim?

6 Incorporating Population Growth

So far we have left growth in the population out of the picture. Let’s look at the situation in which

n > 0. We proceed the same way we do for the no growth case. Dividing the LHS of the capital

accumulation equation 6 by Lt+1 yields:

kt+1 =
Kt+1

Lt+1

= sAKα
t

L1−α
t

Lt+1

+ (1− δ) Kt

Lt+1

.

This equation is in terms of capital on the right hand side. However, since Lt+1 = (1 + n)Lt, we

can write this equation in terms of capital per worker at time t. We can rearrange this, by using

a simple trick: dividing and multiplying by Lt. We can obtain the following equation if we remind

our definitions:
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kt+1 = sAKα
t

L1−α
t

Lt+1

+ (1− δ) Kt

Lt+1

= sA

(
K

Lt

)α
Lt
Lt+1

+ (1− δ) Kt

Lt+1

= sAkαt
1

(1 + n)
+

(1− δ)
(1 + n)

kt.

Multiplying both sides by the growth scale of population:

(1 + n)kt+1 = sAkαt + (1− δ) kt

this equation is essentially an analog to 11 but the left hand side is multiplied by a factor. This

equation says that the evolution of capital per capita has to be at a slower rate than without

population growth because simply, there is the same amount of machines for a bigger number of

workers.

Steady State. The steady state will be computed in the same way, and we did before. Note

that if we proceed in the same way as in the case without population growth, the equations yield

the same result except for a term that has to account for population growth. Capital per capita in

steady state is:

kss =

(
sAss
δ + n

) 1
1−α

Notice that n behaves as depreciation factor. Steady state capital per capita decreases in population

and in the same way, output per capita is proven to have a negative impact.

yss = Ass
Yt
Lt

=
AssK

α
t L

1−α
t

Lt

= Ass

(
Kt

Lt

)α
= A

1
1−α
ss

(
s

δ + n

) α
1−α

From here we can uncover consumption per capita:

css = (1− s)A
1

1−α
ss

(
s

δ + n

) α
1−α

This result found in theoretical models lead to several policy recommendations. World Bank’s

policies towards birth control is one example. During the sixties, a standard policy recommendation
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around the world was to promote birth control programs. The most extreme example is China, which

established the one child policy under a similar philosophy of the model. As we shall discuss in the

course, China today faces a severe demographic problem since the number of elderly is growing as a

share of total population. In Peru, for example, the Government of Fujimori in the ninties engaged

in forced birth control plans. Doctors in rural areas were told to practice surgical procedures on

women after giving birth. A brutal policy which was motivated by the notion that by controlling

births, we could affect output. In Botswana for example, though being perhaps an emblema of good

economic policies during the 80’s, today we find a situation that by the terrible aids tragedy that

the country is suffering, capital per capita is growing fast and so is output per worker in spite the

fact that nominal output is falling.

The Solow model presents predictions about population issues. We will address other issues

when we discuss Malthusian models. When presenting conclusions about what drives birth rates,

we have to be very careful. Anthropologists such as Marvin Harris have for decades argued that

high birth rates are not “irrational” behavior reflecting lack of self control or access to birth control

methods. He argues that there are various extreme examples of societies applied different methods,

including many that would be considered a crime in western societies today. His claim is that people

have a rationale to have many children.

NYU’s Bill Easterly, a former member of the World Bank has criticized several birth control

programs because they miss this observation. Even though, the neoclassical growth is suggestive

that consumption levels in per capita terms are decreasing in the rate of growth of population, it is

not by itself useful in addressing the question of why are there high birth rates.

7 Allowing for Technological Growth

The conclusion of the model we presented in the previous sections predicts that economies will

grow at a decreasing rate and eventually stagnate. It also predicts catching up: poor economies will

finally catch up with the rich. The economic blocks that compose the OECD countries, namely, the

U.S., Canada, Europe and Japan have shown steady growth at almost constant rates over about

150 years now. Average rates in all of these economies, as the model predicts did decline but never

to zero. We are missing a little piece.

Technology improves. The industrial revolution was brought by a processes of technological

innovations. The use of the steam engine lowered transportation costs substantially and opened

a whole gamma of technological developments that increased output per worker. We can say

similar things about combustion engines, electricity, telephones, and more recently the internet

and biotech. Soon, maybe we will develop better nuclear and environmentally friendly technologies.

Nevertheless, many doubters of the capitalist system claimed that technological progress meant

layoffs and an increase in productivity. This was the message in the famous Charlie Chaplin movie

“modern times”. What does the neoclassical model predict if the economies’ productivity of both
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factors grows?

Let’s think about the case in which x > 0. Will there be a steady state in this economy? Let’s

suppose there is a Steady State. That implies that it satisfies equation 11 and satisfies the equality

kt = kt+1. Suppose it does. What happens at period t + 2? It cannot satisfy the equation again

because At grew to become At+1 = (1 + x)At so it can’t satisfy the equation again.

From TFP to labor augmenting TFP. We can express TFP, as labor augmenting by noticing

that At = Ã1−α
t . We can again find some x̃ that satisfies3:

x = (1 + x̃)1−α − 1

This just says that the variable Ãt is growing at rate x̃, that is, Ãt+1 = (1 + x̃)Ãt and we know how

to compute x̃ from x. Then,

Kt+1 = sKα
t

(
ÃtLt

)1−α
+ (1− δ)Kt.

We will redefine the problem again as we did before by dividing both sides of 6 by the “effective”

labor force or Ãt+1Lt+1 instead of Lt+1. The idea is to use the same trick we used earlier and define

an auxiliary variable k̂t = Kt
ÃtLt

interpreted as capital per effective unit of labor:

k̂t+1 = sKα
t

(
ÃtLt

)1−α

Ãt+1Lt+1

+ (1− δ) Kt

Ãt+1Lt+1

=
s

(1 + n) (1 + x̃)
k̂αt +

(1− δ)
(1 + n) (1 + x̃)

k̂t.

This condition is almost the same we had before. We can find a steady state level per effective

unit of labor by setting:

k̂t =
s

(1 + n) (1 + x̃)
k̂αt +

(1− δ)
(1 + n) (1 + x̃)

k̂t

And thus we obtain:

k̂ss =

(
s

δ + n+ x̃+ nx̃

) 1
1−α

.

This says that capital per effective worker is constant. It doesn’t say that capital or capital per

worker even are constant. Thus, we have:

k̂ss =
Kt

ÃtLt
.

3we obtain this equation by noticing that At+1

At
=
(

˜At+1

Ãt

)1−α
⇐⇒ 1 + x = (1 + x̃)1−α
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What is the value of Kt given initial values of Ã0 and L0 and capital per effective unit of labor that

satisfies:

K0 = k̂ssÃ0L0

We obtain it via the definition of k̂:

Kt = k̂ssÃtLt

Since we know that Ãt = (1 + x)t/(1−α) A
1/(1−α)
o and Lt = (1 + n)t Lo, we have that

Kt = k̂ss (1 + x)t/(1−a) A1/(1−α)
o (1 + n)t Lo.

Question. What happens if K0=̃k̂ssÃ0L0?

7.1 Growth rates

Given that k̂ is constant over time in steady state, we can compute the growth rates of all important

variables in the economy. Capital grows at rate4:

Kt+1

Kt

=
k̂ssÃt+1Lt+1

k̂ssÃtLt
=

(
Ãt+1

Ãt

)(
Lt+1

Lt

)
= (1 + x̃)(1 + n)

So it is the compounded rate of technology growth and population growth. Note that when k̂

is in steady state, the economy overall is on Balanced growth path – all variables grow at constant

rate.

Now that we have growth rate of capital, it is easy to compute growth rate of capital per capita:

Kt+1/Lt+1

Kt/Lt
=
Kt+1

Kt

/
Lt+1

Lt
=

(1 + x̃)(1 + n)

1 + n
= 1 + x̃

So capital per capita will be growing at constant rate x̃. Note the difference with previous

versions, where capital per capita was not growing and we used this condition to solve for steady

state. With technological growth we cannot use this condition anymore because capital per capita

will be growing over time, so it is not in steady state but rather on Balanced growth path. For this

reason we also had to define this auxilary variable k̂.

We can next show that output grows at same rate as capital. There are several routes to do

that, we use one particular way. First we can rewrite output as follows:

4More precisely, this is growth factor, i.e. the ratio of variable between two periods. To compute the usual growth
rate you should subtract one from growth factor, for example growth factor of 1 corresponds to growth rate of 0. We
use these terms interchangeably when it does not cause confusion.
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Yt = AtK
α
t L

(1−α)
t = At(k̂ssÃtLt)

αL
(1−α)
t =

= Ã1−α
t (k̂ssÃtLt)

αL
(1−α)
t = Ãtk̂

α
ssLt

Now we can easily compute total output growth rate on Balanced growth path:

Yt+1

Yt
=
Ãt+1k̂

α
ssLt+1

Ãtk̂αssLt
=

(
Ãt+1

Ãt

)(
Lt+1

Lt

)
= (1 + x̃)(1 + n)

Note that now it is straightforward to compute output per capita:

Yt+1/Lt+1

Yt/Lt
=
Yt+1

Yt
/
Lt+1

Lt
=

(1 + x̃)(1 + n)

1 + n
= 1 + x̃

So, output per capita only grows if there is technology growth (x̃ > 0).

Given that consumption per capita is a constant over time fraction of output per capita, it is

also growing at rate x̃:

(1− s)Yt+1/Lt+1

(1− s)Yt/Lt
=
Yt+1

Yt
/
Lt+1

Lt
= 1 + x̃

To summarize, below is the table with growth rates for economy in steady state/ on balanced

growth path:

Case\Variable Kt Yt Kt/Lt Yt/Lt Ct/Lt

No tech. or pop. growth (x = n = 0) 0 0 0 0 0

Pop. growth only (x = 0, n > 0) n n 0 0 0

Tech. and pop. growth (x > 0, n > 0) (1 + x̃)(1 + n)− 1 (1 + x̃)(1 + n)− 1 x̃ x̃ x̃

7.2 Continuous growth

Again, if we substitute the unit time period for a ∆ time period we obtain:

k̂t+∆ =
s∆

(1 + n∆) (1 + x̃∆)
k̂αt +

(1− δ∆)

(1 + n∆) (1 + x̃∆)
k̂t.

Therefore:

(1 + n∆) (1 + x̃∆) k̂t+∆ = s∆k̂αt + (1− δ∆) k̂t.

Thus we have:

k̂t+∆ − k̂t = − (x̃ + n) ∆k̂t+∆ − x̃n∆2k̂t+∆ + s∆k̂αt − δ∆k̂t.

Divide both sides by ∆ and take limits as ∆ goes to zero to obtain:
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lim
∆→0

k̂t+∆ − k̂t
∆

= lim
∆→0

− (x̃+ n) ∆k̂t+∆

∆
− x̃n∆2k̂t+∆

∆
+

s∆k̂αt
∆
− δ∆k̂t

∆

= lim
∆→0
− (x̃ + n) k̂t+∆ + lim

∆→0
x̃n∆k̂t+∆ + lim

∆→0
sk̂αt − lim

∆→0
δk̂t

Therefore:

∂k̂t
∂t

= sk̂αt − (x̃ + n + δ) k̂t.

We have already seen the solution to ∂k̂t/∂t. We know what value it takes:

k̂t =

[
s

(x̃ + n + δ)
+

(
k̂1−α

0 − 1

(x̃ + n + δ)

)
exp (− (1− α) (x̃ + n + δ) t)

] 1
1−α

.

Question. Where does k̂t go as t→∞?

Question. What is the value of capital at time t.

Kt = k̂tLtÃt.

7.3 Factor income

So far we talked only about how output is produced. We didn’t mention anything about wages or

the return to capital. Suppose now that there is a representative competitive firm that solves:

max
K,L

Y − rK − wL (14)

where r is the cost of capital, and w is the cost of labor. The firm rents capital at rate r. The

solution to the firm problem gives the first-order conditions (FOC):

∂Y

∂K
= r (15)

∂Y

∂L
= w (16)

These conditions say that the marginal product of labor (capital) equals the cost of using labor

(capital). Since people own capital and labor, their total income is:

Yt =
∂Y

∂K
Kt +

∂Y

∂L
Lt

= rtKt + wtLt.
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Using 15 and 16 gives the factor income shares:

wtLt
Yt

=
∂Yt
∂Lt

Lt
Yt

(17)

rtKt

Yt
=
∂Yt
∂Kt

Kt

Yt
. (18)

where wL
Y

is the income share of labor and rK
Y

is the income share of capital.

Question. Show that with the Cobb-Douglas technology, we obtain constant labor income and

capital income shares. What are these shares equal to?

8 Policy experiments with the Solow model

The Solow model opens a door for analysing the effect of particular policies or events on economic

growth. We next look at two policy experiments with the Solow model.

The first experiment is an increase in saving rate. Several Eastern Asian countries such as

South Korea, Taiwan, and China all experienced an increase in saving/investment rate during their

economic takeoff. Does the increase in saving rate drive economic growth in these countries? This

experiment speaks to this issue. Figure 8 depicts the effect of an increase in saving rate from s to

s′ in the basic Solow graph. Gross saving increases such that the economy has a new steady state

which is higher than the previous one. The economy starts in the old steady state will converge to

the new steady state, during which capital per effective labor increases. Figure 9 depicts the rate of

change for capital per effective labor. Immediately after the increase in saving rate, it grows fast.

The rate of change declines over time as economy approaches the steady state.

The change in capital directly translates into changes in growth rate. Figure 10 depicts the

dynamics of the growth rate of GDP per capita over time. The economy initially grows at rate g

which is the the growth rate of technological change. Immediately after the increase in saving rate,

growth rate also increases to a new level. From there, it gradually moves back to g. The increase in

saving rate has a temporary boost on growth rate but will not lead to an increase in growth rate in

the long run. It has a "level effect" instead of a "growth effect". Figure 11 shows this "level effect":

the increase in saving rate shifts the trajectory of log GDP per capita up instead of changing the

slope (growth rate), even though growth rate does increase for a period after the increase.
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Figure 8: Solow diagram: increase in saving rate
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Figure 10: Growth rate dynamics: increase in saving rate
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Figure 9: Growth in capital per effective labor: increase in saving rate

A series of studies by Alwyn Young on the Eastern Asian economies show that TFP growth in

these economies was not as spectacular as their growth in GDP per capita. The biggest contributor

to their economic takeoff is capital accumulation brought by increase in saving/investment rate.

These facts combined with the predictions of the Solow model led Paul Krugman to predict in 1994

that the fast economic growth in these economies are not sustainable, much like the experience of

the USSR in the 1960s.
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Figure 11: Dynamics of per capita income: increase in saving rate

Our next experiment features a decrease in the population growth rate. This change could well

be induced by a birth control policy. An example is China’s "one-child" policy. In the later 70s and

early 80s the Chinese government introduced the policy, restricting that a couple could only have

one child. One rationale for this policy was to prevent the overpopulation China might have faced

if fertility rate kept high. A smaller population was believed to relieve the pressure on resources

and boost economic growth. But will such a policy promote growth in the lens of the Solow model?

Figure 12 plots the effect of a decrease in population growth in the Solow diagram. A decrease

in population growth shifts the line for capital depreciation to the right, leading to a higher steady

state of capital per effective labor. Again, this will trigger a process of convergence to the new

steady state. Figure 13 characterizes the change in changes. Again, we will see a jump in the

growth rate of capital per effective labor immediately after the change in population growth. But

the effect wanes over time as the economy approaches the new steady state. If we were to plot the

dynamics of growth rate and log GDP per capita, they will look just like those in Figures 10 and

11. Namely, there is only "level effect" associated with an decrease in population growth too.
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Figure 12: Solow diagram: decrease in population growth

9 What can one say about the assumptions?

Solow never attempted to write a theory about every single growth experience. He just argued that

the assumptions he made were possible explanations of the convergence phenomenon we find in

states in the US or counties in Japan. It in fact fits well in these experiences though, for example it

does a bad job in explaining growth experiences in different regions of Italy. Several modifications

may be done to the assumptions. As I said in the introduction to this chapter, the model may be a

useful tool as to give as a hint on what is going on. Basically all the equations may be altered. For

example we may think that it is reasonable to modify the equation 6 by introducing adjustment

costs, which would imply that investment takes some time to build. We wouldn’t buy much from

this attempt because time is not part of the conclusions we presented. After all, India or Peru have

had many years to go by.

One interesting change is to assume that the savings rate is not constant. A reasonable modifi-

cation is to assume that the poorer you are, the lower your capacity to save.

We can also try to introduce a government sector that charges taxes and spends money in

productive or unproductive goods. Corruption can be considered in this context. We can introduce

natural resources and land to study the effects of these elements. We can look at migration and

capital transfers when we open the model and have two countries (or more). We can also change

our definition of capital and adopt a broader definition that includes human capital. These issues
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Figure 13: Growth in capital per effective labor: decrease in population growth

will be covered in future lectures. Before doing so, in the next lecture we will introduce growth

accounting into the picture. By doing so, we will also build a framework to tell us, what of the

assumptions may be going on. We wrap up this lecture with the study of poverty traps.
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