Cash-in-Adrage - Continuos-Time Version

Asoun C & h birds. Then is = 0

-10 Away from contraint:

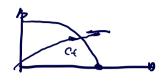
$$p \mathcal{V}(w) = \mathcal{U}(x^{*}) + \mathcal{V}'w$$

$$m = \pi m = x + \frac{y}{(1+y)}$$

$$u'(x*) = v'_m$$

Change of Variable

where class the Constraint Come from?



Then :

 $\mu_{30} \rightarrow 0$ $U(x) + V_{n_{1}}^{1} (-7\hat{\omega} - x + 3)$ $u_{35}^{1/2}$

From Discute flodel to Continuous Holel Non-binding region $\sqrt{(m)} = \mathcal{U}(x) + \mathcal{B} \mathcal{V}(m')$ (1417) 加コーハーメ - ン(4) + カナと x ≤ m - v(u) 7/(1+7)+2 } e Solve: U'(x)= B V'(m') W/ GYH, inderest envelope condition Vn (m') doesn't alter lator decion. the bight I the men-birdiy. ア!(ト) = U((x1) then $O = \frac{1}{l(4\pi)}u'(x') - u(x)$ Consider limit: exp(ma) U'(x ++ o - u'(x) $=\lim_{\Delta > 0} \frac{3(\Delta) \, U(x(\Delta)) - U'(x_0)3(0)}{\Delta} = \frac{\partial \, e^{-\sqrt{(1-1/2)}\Delta) \, U'}}{\partial a}$

$$= -(p+\pi)u'(x) + u''(x)\dot{x} \rightarrow (p+\pi) = \frac{1}{x}\dot{x}$$

problem at the constraint:

$$X = m - V(h) \rightarrow m'(HT) = m + V(h) - x + h + T$$

$$h + T$$

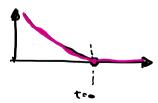
then:
$$u'(x)y'(h) = \beta u'(x')$$

$$U'(m-\nu(h))\cdot\nu'(n) = \frac{\beta}{(1+\eta_T)}U'(m'-\nu(h))$$

aroun if binds at I - black the

n" = "+"

transon non-linear difference into no linear differential.



Poisson Models	1
X(+) is stochestic pur as u/:	0
X(+) is stochestic pur as w/:	, , , , ,
(i) at dutes it, tz, to 2 suffers incle parde	1
inccents. $X(t_2)-X(t_1)$ independent of	N (+,)
	v) X0=0
(ii) Stationarity - inelependence of t	. Can be
(iii) Prob[x(t+n) - x(t)>0]= 7h+&(h)	relaxed.
(ii) Stationarily -> inelependence of t (iii) $Prob[\mathcal{K}(t+h) - \mathcal{K}(t) > 0] = \lambda h + \mathcal{O}(h)$ $Prob[\mathcal{K}(t+h) - \mathcal{K}(t) > 1] = \mathcal{O}(h)$	bonney bonney
(i) - (iii) —p $\chi(t)$ ~ Poisson λ .	J.
$Pr[x(t)=h]=\frac{(\lambda t)^n}{n!}\exp(-\lambda t)$	Cerany
Construction. 3 destiful proof.	

Let $\chi(t)$ increase ω / prob $\chi(\Delta)$. Then, ω make prob $\chi(\Delta) = P$, $\psi(\Delta) =$

Prob[x(+)=x(++~)]=P

X(t) A

and prob

~ Poisson (h, h.) this is true for any T. by in dependence + statismity: Proof the proposition Property of inter-arrival times. • Pr (Tex: xae- xo 20) <+) = 1- Pr[x+=x0]=1-exp(-x+) then pdf of t is $\lambda \exp(-xt)$.

What about sums of Poisson

Let X_t be Poisson and Let Z_t be Poisson.

If what is the distribution of $N_t = x_t + Z_t$? Combe proved

What is the distribution of time enirely! $1 - \exp(-x_t + x_t)$?

Expected time between charges in $m \times (t)$

#[
$$tJ = \int_{c}^{\infty} e^{-\lambda t} dt$$
by integration b_{j} , parts:

Present	Valves	w/	Poisson	Jumps.
				•

* Assume agent can have low or high valuation for holding as asset. Un, Un

Valuation charge according to poisson proces. $V_{L} = \mathbb{E} \left[\int_{0}^{\infty} \exp(-pt) U_{L} dt + \exp(-pt) V_{H} \right]^{\frac{1}{2}} \frac{1}{2} \frac{1}{2}$

where & is first poisson event.

Can we rolne for Vi and Vi?

Direct apprach:

0

one of low values.

Two Poisson Events

By analogy you can she that if events are

move than two

what if probable feature "time t" component?

Model of Duffie, Garlacano, Padersen

(*) Asset supply s<1.

(*) Messure 1 of agents

Lo agents can have high valuation for $V \in \{l, h\}$

Ly 15 valuation is high Un per wit of time

Los to get flow, you must hold the asset.

Lo how valuation is value UL.

(*) Agents trade and baryoin once assets

Lo linear transferable utility: - 1, + 1.

relignent states in the model $X = \{ \mathcal{V}, \mathbf{Q} \}$ high or how valuation. matching technology - S+ Dellers. - B+ buyes Discrete Time 9++A= A(A) [(S+, B+) matching function. matching probability is given by captures mutching technology $\frac{g_{++\Delta}}{g_{+}} = \lambda(\Delta) \left[\left(\frac{3}{B_{+}}, \frac{1}{2} \right) \right]$ CR3& Eightness O 9++0 = 2(0) [(5+/5+, B+/2+) following some principle, made I consisted w/ poison process that veries w/ a. Who sells? h=1, v=2 Who buys? N=H, h=0

Suppose that all matteles realt in track. Then $M_{t+\Delta}^{\times} = M_t^{\times} + \underbrace{in+low}$ in flow \$ x= 11 H 1 Chage in Volve MOL = MOL + NA MOH - STAG. ~ X D * M ? 2 (4°4 - 4°4) = 2 [G(1/04,1) H'

law of motion for tightness # 0 = 5/B = Mon * M = [] Mt 2 Evano PDE book pr joven treatment of conservation Value functions: PV"= W_ + 2 (V"+P_-V") + X(V°H - V°L) + V°C Same for other values. How do us determine P? Nash Bargaining (V1+P-V°) (V1-V°-P)-4 Lo outside opton

Solving, we obtain a solution of differential Equations.

worker generalizing > Pow & siner * Senih Uslo * Aforso-Lagos Biandi - Bigi-Fed- Funds fluht Environment in Blanche Bigis Tealles goo to integrate to Portpolio Proble. Sequential Game for publics:

Raview - Stockastic Calculus

Brownian Motion

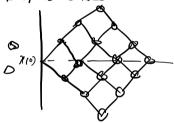
Idea, particle that money continuously w/ random

petleun.

Eintein faultation

o Every justerval O, variable com moun yp on down.

think of a Katticen



movened on a lettice.

- · Djunje
- a interval Vo

J(x,+)1)-J(k,t)=1/4(x+0x)

Fix T = NVS, compte distribution from byward

who yields

130 xt ~ N(0, √t')

Formly lundow function Xt: LO,00]-DIR - X(0) =0 Co(WD)

- x(+) Continuos
- x(+)-x(+)~~~(0,0)F)

> LL. 9 1 + X(9)

* process 3 (Requires Kolmoporor Extension Theonen) Spokestic Calculus * Reals of behavior of objects that depend, a are built from BM. 2 gr. dx = md+ -> dh, = 5 K, d+ + o k, dw+ - solow SquPlac. dxt= Md++ o-dw+. What it we wat + "add" Bh? notuly Sodx = X(+)-X(+) need D X(T)= X(6)+,U++ O- HW(+) theory - To integrate = X(0) + M(+) + O (W(T)-W(0)) - evente, sindet Xx But in general, what if O(W) a down random a none jume? we asublet Ziemmen istegel. However, we would soon Am into defficity.

Issue w/ Riemman integral:
Let [O, T] be fixed.
Pertition [0, T, 3, [t, , T2] [ec, , T]
- Fix 2 1. +. 21= tix+(1-27tix)
[0,1]
w/ himmen, how you partition affects outcomes.
Tince integral is Random varible, we med
notion of convergence. In this case, we can , flear
9 quare
$\mathbb{E}\left[\left(S_{n}-S\right)^{2}\right]\longrightarrow 0$
where In is some purion and S some random vaible.
Serious issue is that of Sn is
Riemann integral, we get sultiple anevers!
Its $I(x,p) = \lim_{n \to \infty} \int_{\infty}^{\infty} x_{i,j} (w_{i,j} - w_{i,j}) dt$
∫ ₀ ^T ω _t dω _t = ½ (ω _t ² - ω _t ²) - ½ (T- to) telouping som
Strotanovic 140 correction
Sur due = = (w? - w?,) Coincides we depicted.
Backword

Siwrdur = /2 (W2-W2) 1/2 (7-to)

Denirebility of It's Integral. * in fluo forward. * Polid Mesny: L23 O(w, +) Properties: * Linearity $\int_{0}^{T} = \int_{0}^{a}$ + 5 * Additivity * Isandy: E[I(0)]=[[] (0)]=0 But E[(5'odw)2] = [E[o(+, w))2|Fo] d. LA Apprahes to C o integral Los direct approved, in judgels. F(5,-8)2]=0 > Squee Indepoble Fto Process E [o (c, t) dt] < 60 $dx_t = \mu(\omega, t)dt + \sigma(\omega, t)d\omega_t$ Les condition mens serse. J'dk+ = X(T) - X(0) & J'u(w,1)dt + 5 + 0(cu,+) dU+

Its: Lemma (1-dinusion)

Let f(x+,t)=Y+ be a function of 2+ It's process. then dy = fx dx ++ if (dx+)2 + ft dt Silaple Roles at stochasic at dw dw dw dw dw dw dw dw

Examples

(*)
$$exp(w_+) = Y_+$$

By Ito: $exp(w) = dw + \frac{1}{2} exp(w_+) dt$

Very useful theorem to do calculations, - go backwands * Posit a how, then find solution. dx+=/x+d+ + x+ or dB+ Bouran dx+ = yd+ odb+ 11- Non r dB+ → Rayela BM. Geometric. Match coefficiets exp(08, + pt) = X+ By Ito: dx+ = dx+dB+ px,dt +1 02 X+ d+ = (B+ 1/2 or2) X+ d+ Thus, 0=0, 1=1+1/202-DB=11-1/202 x = exp(\$ x + +(\mu-1/2 \sigma^2) t) Le used in clasic option pieceiz X , is log noverally aitelfed

other process used in Econ (Ornstein-Vhlenbech)
$$dX_t = -\alpha X_t dt + \sigma - dW_t \qquad (O-H)$$
Laboration Closed form.

lineue: dx+= ddt + o-dBr (Affine)

Interest-Rate Process (Cox Injersoll) $dV_{\epsilon} = (A - V_{+})dt + VV_{\epsilon}' dB_{+}$ by ah has nise chood form.

Brownian Bridge (Garkan/Panayes)

B(+) = w(+) - +/T w(T) =-

Model Alloston

Applications

We It's 10 show: moreta of 34. (even monts)

 $\mathbb{E}\left[W_{+}^{2n}\right] = \frac{1}{2!} \frac{2k!}{k!} \times t^{k}$ K integer.

HJB Equation Modelling Controlled processes: Let dB+ be a Brownian Station. com divides dPin - MPr dt+ or Pr dBr Wealth is: Wt= (St + (1-5t)) Vr which of bonces. dw, = ____ -C, d+ + SdP++ wx (1-S+) v, d+ = (r.-c.)d+ + 8+ (dp.-r.d+) = W4 (re-ce) alt +48+ (M+P+ ----) = (ve-Cx)Wt dt + St Wx . . . 11 1h

+ 3, o. p.

More Examples Let X+ be EBM. Calculate: Value of V(x,+)= E[U(X+)exp(-,>(T-+))] Direct Appraach by use distribution of BH. in direct spproach ► HJB DV(X,1) = Vx X+ df + = 02 x+ df + V+ w/ termind condition $\mathcal{Y}(x_{\tau}, \tau) = \mathcal{U}(x_{\tau})$ Guess and Verify: V(x,+)=3(+) U(x+) if b: p3(+) L(X+) = 3(+) L(X+) X+ + /2 02 L(X+) X+ + 3(+) L(X) hen ce: p3(+) = 3(4) (1-2) + 1/2 0-2 (-1) 3(1) + 3(+)

Solve $\frac{3(f)}{7(f)}$ w/ termind bundation $LI(X_{\tau})$ hence 3(T)=1

Classic Consumption Savings

Counicle a risky coset: $dW_t = MW_t dt + OW_t dB_t - C_t$

Postelete

$$O(p^i) - \frac{O}{2} \left(\frac{\dot{p}}{P}\right)^2$$

$$\mathcal{T}(p_{+}^{i},t) = (P_{t}^{i} - w_{t}) \underbrace{(P_{t}^{i})^{\epsilon}}_{P_{t}} Y_{t}$$

$$Z_{p} P_{r} \left(\frac{\dot{p}}{p} \right)$$

$$V_2^a(t) Z_{p,t} = \pi_{pi} + Z_{pp}(\frac{\dot{p}}{\rho}) + Z_p \ddot{p} - \sigma \pi V_t + Z_{p,t}$$