Homework \#3
UCLA - Fall, 2017
ECON 221C MONETARY ECON III
Monetary Economics in continuous time.
Saki Bigio

Excercise 1 [Stochastic Calculus]. In order to do this question, you will want to read Chapters 2-5 of Evan's Introduction to SDE's or Chapters 2-3 of Stokey's book. You may want to consult Oksendahl or Harris.

Use Ito's Lemma to show or solve:

1. Calculation of integrals:

$$
\int_{0}^{T} W^{N} d W=\frac{1}{N} W^{N}(T)-\frac{N}{2} \int_{0}^{T} W d t
$$

2. Prove that the even momenta satisfy:

$$
\mathbb{E}\left[W^{2 k}(t)\right]=\frac{(2 k)!t^{k}}{2^{k} k!} \text { for } k \text { integer }
$$

3. Show that:

$$
\mathbb{E}\left[W^{2}(t)\right]=\frac{t^{3}}{3}
$$

4. Show that:

$$
X_{t}=\frac{B_{t}}{1-t} \text { solves } d X_{t}=-\frac{X_{t}}{1+t} d t+\frac{1}{1+t} d B_{t}
$$

5. Solve the OH process

$$
d X_{t}=-\mu X_{t} d t+\sigma d B_{t}
$$

For that, first work with $\mu=-1$. Apply Ito's Lemma to $d\left(e^{-t} X_{t}\right)$ and obtain an expression for X_{t} as a function of time, X_{0} and a stochastic integral. Compute the first to moments of X_{t}. Argue that X_{t} is normally distributed based on the properties of stochastic integrals. Provide a distribution for X_{t}.
6. Use Ito's Lemma to solve for X_{t} in:

$$
d X_{t}=\left(\alpha-\mu X_{t}\right) d t+\sigma d B_{t}
$$

Do that in one line by invoking your solution to 5 .
7. Let P_{t}^{i} be the price of good i at time t. Let P_{t}^{i} follow a geometric Brownian motion with Brownian term B_{t}^{i}. Each shock is i.i.d. Consider a utility function of the CES class:

$$
U(\hat{x}) \equiv\left(\sum_{i \in I} \alpha_{i}^{1 / \theta} x_{i}^{1-1 / \theta}\right)^{\frac{\theta}{\theta-1}}
$$

Construct the indirect utility function corresponding to the budget constraint:

$$
<P \cdot x_{i}>=e .
$$

In order to perfom the following question, you must read about the multidimentional version of Ito's Lemma.

Represent $U(\hat{x})$ now as a function of consumption and a preference shock vector that depends on P_{t}^{i}.
(a) Provide a diffussion proccess for that preference shock.
(b) Describe the behavior of that process a the limit where $N \rightarrow \infty$-i.e. as we add goods, while keeping $\sum \alpha_{i}=1$.
(c) As t goes to infinity, where does the preference shock converge to? How does your answer depend on θ ?
(d) Assume now that instead of e, now the country is endowed (with constant endowments) with a subset J of the I possible goods. Rewrite the Budget constraint. Solve for the terms of trade. Solve for the Real exchange rate. Write a stochastic process for the terms of trade. Write a stochastic process for J.
(e) Assume now that a subset Z of J are non-tradeable goods. Thus, there prices is determined endogenously. Find the terms of trade, the real exchange rate and their corresponding stochastic processes.

Excercise 2 [HJB Equation - Stopping Time]. Assume U is consistent with CRRA utilty. Assume that X_{t} follows a Geometric Brownian Motion with positive drift. Assume that the agent gets 0 utilty from $t \in[0, T)$. However, the agent gets utility $U\left(X_{T}\right)$ at date T. The value function in this problem is given by some $V(X, t)$ assuming a discount factor ρ.
(a) Direct Approach: use the solution to the GBM to solve for the value of the agent at time T. For this, simply compute the expectation of $U\left(X_{T}\right)$, conditional on the value of $X(t)$ and t. Given the value of $X(t)$ and the time remaining $T-t$, you can solve for the distribution of $X(t)$ or you can integrate the objective (to get the expectation) by use of the distribution of the underlying Brownian motion $\left(d W_{t}\right)$.
(b) Indirect Approach: Derive the HJB Equation:

$$
\rho V(X, t)=V_{x} X+\frac{1}{2} \sigma^{2} V_{x x} X^{2}+V_{t}
$$

and write it's a corresponding terminal condition for T .
Guess and verfiy a solution of the form:

$$
V(X, t)=z(t) U\left(X_{t}\right)
$$

Then, pin down an ODE for $z(t)$. Solve the ODE and verify that the direct and indirect approaches coincide.
(c) Modification: Explain in words, how would you solve the problem if I give you the opposite case: you get utility $Q\left(X_{t}\right)$ from $t \in[0, T)$ and the process ends at T.
(d) Can we add the solutions from (b) and (c) to solve a problem with both, flow utility and terminal values?

Excercise 3 [HJB Equation - Time to Leave a Set]. Assume that X_{t} follows an O-H process. Assume that. Define a set $[A, B]$.

Compute the expected time to live the set. Assume you start at the interior of the set. Compute the expected time to touch $\partial[A, B]$.
(a) Direct Approach: Don't solve this, but do a sketch of how you could solve this question.
(b) Indirect Approach:

Solve the ODE:

$$
0=1+V_{x} X+\frac{1}{2} \sigma^{2} V_{x x} X^{2}
$$

subject to: $V(A)=V(B)=0$.
Then, explain why:

$$
V(X)=E\left[\tau_{x} \mid X_{t}=X\right]
$$

where

$$
\tau_{x}=\min \left\{\inf _{t}\left\{X_{t}=A\right\}, \inf _{t}\left\{X_{t}=B\right\}\right\}
$$

Excercise 4 [Merton's Problem]. Write down a consumption savings problem in continuous time. Assume that the individual can invest in stocks or bonds. Stocks follow a Geometric Brownian motion. Bonds pay no interest rate.

1. Write the SDE for Wealth.
2. Assume CRRA. Guess and verify that the value function is of the form

$$
V(W)=A U(W)
$$

Solve for the optimal portfolio and consumption rules.
3. Assume CARA utility. Solve the model again.

