Leverage Restrictions in a Business Cycle Model by L. Christiano and D. Ikeda

Saki Bigio Columbia GSB

November 15, 2012

Discussion

- Force in static model.
- Why leverage constraints matter?
- Dynamic Considerations.
- Comment.

- Two Players.
 - Households and Bankers.
 - Endowment: C.
 - Endowment: N.
 - $\circ~{\rm Risk}\mbox{-Neutral Preferences}.$

- Technology
 - \circ Household:
 - Storage.
 - Deposits Cost: $\varphi(d)$, with $\varphi' > 0, \varphi'' < 0$.

- Technology
 - \circ Household:
 - Storage.
 - Deposits Cost: $\varphi(d)$, with $\varphi' > 0, \varphi'' < 0$.
 - $\circ\,$ Banker.
 - Risky, $\bar{R}^G > \bar{R}^B > 1$.

- Technology
 - \circ Household:
 - Storage.
 - Deposits Cost: $\varphi(d)$, with $\varphi' > 0, \varphi'' < 0$.
 - $\circ\,$ Banker.
 - Risky, $\bar{R}^G > \bar{R}^B > 1$.
 - Chooses return probability
 - Effort cost: C(p).

- Markets
 - \circ \bar{R} -contingent debt.
 - Effort, not contractible.
 - Static Contracts (anonimity)

Household's Problem _____

• Interperiod Loan:

$$\max_{d} \left(c - \varphi \left(d \right) \right) + Rd$$

Household's Problem _____

• Interperiod Loan:

$$\max_{d} \left(c - \varphi \left(d \right) \right) + Rd$$

• Solution implies:

$$R(d) = \varphi'(d)$$

• Without LLC:

$$\max_{p \in [0,1],D} (D+N) \left(p\bar{R}^G + (1-p)\bar{R}^B \right) - D \left(pR_D^G + (1-p)R_D^B \right) - \frac{1}{2}p^2$$
subject to:

$$pR_D^G + (1-p)R_D^B \ge R$$

Discussion

-1

Banker's Problem _____

• Arranging terms:

$$\max_{p \in [0,1],D} (D+N) \left(p\bar{S} + \bar{R}^B \right) - DR - \frac{1}{2}p^2$$

subject to:

$$ps + R_D^B \ge R$$

Banker's Problem _____

• Arranging terms:

$$\max_{p \in [0,1],D} \left(D+N\right) \left(p\bar{S} + \bar{R}^B\right) - DR - \frac{1}{2}p^2$$

subject to:

$$ps + R_D^B \ge R$$

FOC:

$$p : (D+N)\bar{S} = p$$
$$D : pS - \bar{R}^B \ge 0$$

Discussion

- Without LLC, market solution and planner solution coincide
- Implemented with $R_D^G = R_D^B = R$.

Banker Problem with LLC _____

• With LLC

$$\max_{p \in [0,1],D} (D+N) \left(p\bar{S} + \bar{R}^B \right) - DR - \frac{1}{2}p^2$$

subject to

$$LLC: (D+N) \bar{R}^B - DR_D^B \ge 0, (D+N) \bar{R}^G - DR_D^G \ge 0$$

Banker Problem with LLC _____

• With LLC

$$\max_{p \in [0,1],D} (D+N) \left(p\bar{S} + \bar{R}^B \right) - DR - \frac{1}{2}p^2$$

subject to

$$LLC: (D+N) \bar{R}^B - DR_D^B \ge 0, (D+N) \bar{R}^G - DR_D^G \ge 0$$

• Effort Distortion?

 $\circ~$ Not really, objective is independent of $\left(R_D^G,R_D^B\right)$

Discussion

Banker Problem with LLC _____

• With LLC

$$\max_{p \in [0,1],D} (D+N) \left(p\bar{S} + \bar{R}^B \right) - DR - \frac{1}{2}p^2$$

subject to

$$LLC: (D+N) \bar{R}^B - DR_D^B \ge 0, (D+N) \bar{R}^G - DR_D^G \ge 0$$

• Effort Distortion?

 $\circ~$ Not really, objective is independent of $\left(R_D^G,R_D^B\right)$

• However LLC may bind.

• Threshold N:
$$N^* = D\left(R\left(D\right)/\bar{R}^B - 1\right)$$
.

LLC - R constant

DRS to Intermediation - R elastic _

Bigio

Discussion

- Effort is not contractible (verifiable, observable)
- Commitment issue
- Ex-post value is:

$$\max_{p \in [0,1]} (D+N) \left(pS + \bar{R}^B \right) - D \left(ps + R^B_D \right) - \frac{1}{2} p^2$$

 \mathbf{SO}

$$(D+N)S - Dps = p$$

- Effort is not contractible (verifiable, observable)
- Commitment issue
- Ex-post value is:

SO

$$\max_{p \in [0,1]} (D+N) \left(pS + \bar{R}^B \right) - D \left(ps + R^B_D \right) - \frac{1}{2} p^2$$

$$(D+N)\,S-Dps=p$$

• Need to take constraint into consideration.

• Now objective is

$$\max_{p \in [0,1],D} (D+N) \left(pS + \bar{R}^B \right) - DR - \frac{1}{2}p^2$$

subject to:

$$IC: (D+N)S - sRD = p$$
$$LLC: (D+N)\overline{R}^B - DR_D^B \ge 0, (D+N)\overline{R}^G - DR_D^G \ge 0$$

Discussion

14 / 24

• Why planner's solution differs?

- Why planner's solution differs?
- Now objective is

$$\max_{p \in [0,1],D} (D+N) \left(pS + \bar{R}^B \right) - D\mathbf{R} \left(D \right) - \frac{1}{2}p^2$$

subject to:

$$IC: (D+N) S - s\mathbf{R} (D) D = p$$
$$LLC: (D+N) \bar{R}^B - DR_D^B \ge 0, (D+N) \bar{R}^G - DR_D^G \ge 0$$

- Non-contractible effort
 - Distorts effort from first best.
- R elastic.
 - Pecuniary externality.
 - Individual banks don't internalize effects on dynamic incentives.

Key Features _

Leverage Constraints

Dynamic Considerations

- Dynamics in $N < N^*$ state:
 - Linearity D: 0 expected profits.
 - Competition is bad here, low R
 - Leads to pecuniary externality (Static Effect)

Dynamic Considerations

- Dynamics in N < N* state:
 - Linearity D: 0 expected profits.
 - Competition is bad here, low R
 - Leads to pecuniary externality (Static Effect)
- Leverage Constraint in N < N* state:
 - Static: Monopsony Effect
 - Dynamic: N recovers faster.
- Leverage Constraint $N > N^*$ state:
 - $\circ~$ In good times banks fail to internalize fall to $N < N^*$

Dynamic Considerations _____

- Dynamics in N < N* state:
 - Linearity D: 0 expected profits.
 - Competition is bad here, low R
 - Leads to pecuniary externality (Static Effect)
- Leverage Constraint in N < N* state:
 - Static: Monopsony Effect
 - Dynamic: N recovers faster.
- Leverage Constraint $N > N^*$ state:
 - $\circ~$ In good times banks fail to internalize fall to $N < N^*$
- Summary
 - In bad times, less volume but higher effort and profits.
 - $\circ~$ In good times, less volume but higher N in bad state.

Bigio

Discussion

19 / 24

• Now p(D) increasing in D.

- Now p (D) increasing in D.
 E.G. Christiano Ikeda
- Everything else equal.

• Stylized facts (Correlation with N):

	CI	Behavioral
$E\left[\Delta Y_t\right]$	+	+
$V\left[\Delta Y_t\right]$	_	—
R	+	+
P_t	+	+

Alternative Model

• Effects of leverage constraint:

	CI	Behavioral
$E\left[\Delta Y_t\right]$	+	—
$V\left[\Delta Y_t\right]$	_	+
R	_	—
P_t	+	-

Alternative Model

• Effects of leverage constraint:

	CI	Behavioral
$E\left[\Delta Y_t\right]$	+	—
$V\left[\Delta Y_t\right]$	_	+
R	_	—
P_t	+	-

- Difference?
 - Hidden Variable. E.

- How to distinguish?
 - $\circ~$ Natural experiment.
 - Structural or reduced form model will not reveal model.

- How to distinguish?
 - $\circ~$ Natural experiment.
 - $\circ~{\rm Structural}~{\rm or}$ reduced form model will not reveal model.
- Prudential about macro-prudential policy.
 - Lucas critique squared.

- Larry and Daisuke address important issue
 - $\circ~$ Basel-III is a HUGE deal
- Leverage is good in bad times.
 - $\circ~{\rm Few~models}$
 - $\circ~$ Good to have on shelf

- Larry and Daisuke address important issue
 - $\circ~$ Basel-III is a HUGE deal
- Leverage is good in bad times.
 - \circ Few models
 - $\circ~$ Good to have on shelf
- Challenge: identify friction