Repurchase Options in the Market for Lemons

Saki Bigio¹ Liyan Shi²

¹UCLA

²EIEF

INTRODUCTION

Motivation

- Modern financial contracts: Repo | Collateralized Debt | Bridge Loans |
 Factoring | Discounting
 - also early contracts: Pawning | Pignus
 - All have embedded repurchase option
- Why repurchase collateral? Why not simply sell the asset?
 - argue natural response to adverse selection: prevents market unraveling
- Contribution:
 - characterize nature of these contracts in market environment
 - no commitment to a security design ex-ante

► Investment opportunity w/ 20% return

► Investment opportunity w/ 20% return

Collateral	Value			
Low Quality High Quality	\$40 \$80			
	Purchase Price	Repurchase Price	Average Funds Lent	Added Value
Sale Repo	\$40	∞	\$20	\$4

► Investment opportunity w/ 20% return

Collateral	Value			
Low Quality High Quality	\$40 \$80			
	Purchase Price	Repurchase Price	Average Funds Lent	Added Value
Sale Repo	\$40 \$50	∞ \$60	\$20 \$50	\$4 \$10

- ▶ What is the nature of market equilibrium?
 - what contracts survive?
 - is the equilibrium efficient?

DETAILS

Environment

- ► Trade motive: liquidity need + common valuation
- Contract: asset sale + repurchase option
- ► Modern treatment:
 - ▶ Netzer-Scheuer (2014) timing: allow contract withdrawal
 - ► Miyazaki-Wilson-Spence equilibrium notion

DETAILS

Environment

- ► Trade motive: liquidity need + common valuation
- Contract: asset sale + repurchase option
- Modern treatment:
 - Netzer-Scheuer (2014) timing: allow contract withdrawal
 - Miyazaki-Wilson-Spence equilibrium notion

Results

- Unique <u>pooling</u> equilibrium of <u>ALL</u> assets
 - resolves: adverse selection
 - lack closed form for any continuous distribution
- Constrained inefficient outcome
 - optimal repo contract = security design solution
 - competition: leads to cream skimming
- When adverse selection under asset sales high, repo dominates outright sales
 - trade-off: increase participation vs. cream skimming

RELATION TO LITERATURE

Security Design

Demarzo-Duffie (1999), Biais-Mariotti (2005)

paper: market outcome+no commitment to a security design

Competitive markets with adverse selection

Wilson (1977), Netzer-Scheuer (2014),

Gale (1992,1996), Guerrieri, Shimer, and Wright (2010), Guerrieri and Shimer (2014), Chang (2018)

- focus on asset sales
- paper: richer contract space leads to pooling & improves outcomes

Micro-foundation of repo contracts

Duffie (1996), Dang, Gorton, and Holmström (2010), Monnet and Narajabad (2017), Gottardi, Maurin, and Monnet (2017), Parlatore (2019)

- result from transaction costs (exogenous or endogenous)
- paper: private information

Macro models with private information

Bernanke Gertler (1989), Eisfeldt (2004), Christiano, Motto and Rostagno (2013), Kurlat (2013), Bigio (2015)

- ▶ Macro models: e.g. costly-state verification (Townsend, 1979) or Akerlof (1970)
- paper: closed form, portable to macro

THE ENVIRONMENT

Two periods: t = 1, 2

No discounting

Risk neutral

AGENTS

Borrowers continuum

- t = 1: endowed w/
 - an indivisible (collateral) asset
 - ▶ illiquid investment project
- ightharpoonup t = 2: payouts:
 - ▶ asset dividend $\lambda \in \Lambda \equiv \left[\underline{\lambda}, \overline{\lambda}\right] \sim F(\cdot)$
 - project gross payoff $(1 + r) \cdot \vec{x}$
 - investment x, r > 0

Lenders

▶ indexed by $j \in \mathcal{J}$

AGENTS

Borrowers continuum

- t = 1: endowed w/
 - an indivisible (collateral) asset
 - illiquid investment project
- ightharpoonup t = 2: payouts:
 - ▶ asset dividend $\lambda \in \Lambda \equiv \left[\underline{\lambda}, \overline{\lambda}\right] \sim F(\cdot)$
 - project gross payoff $(1+r) \cdot \vec{x}$
 - investment x, r > 0

Lenders

▶ indexed by $j \in \mathcal{J}$

Information asymmetry

 \triangleright λ borrower private info

REPO CONTRACTS

Specify two prices

$$p = \{p_s, p_r\} \in [\underline{\lambda}, \overline{\lambda}] \times [\underline{\lambda}, \overline{\lambda}].$$

- ightharpoonup t = 1: sales price p_s for asset
- ightharpoonup t = 2: repurchase price p_r to repossess asset

REPO CONTRACTS

Specify two prices

$$p = \{p_s, p_r\} \in [\underline{\lambda}, \overline{\lambda}] \times [\underline{\lambda}, \overline{\lambda}].$$

- ightharpoonup t = 1: sales price p_s for asset
- ightharpoonup t = 2: repurchase price p_r to repossess asset

Borrower repurchase option

- borrower can default
- lender commits to return asset if paid
- outright asset sales: special case $(p_r = \bar{\lambda})$

REPO MARKET

Stage 1: Each lender offers a contract

The set of offered contracts, observed by all

$$\mathbb{P}_0 = \left\{ \boldsymbol{p}^j : \forall j \in \mathcal{J} \right\}$$

Stage 2: Contract withdrawal

Remaining contracts:

$$\mathbb{P} = \left\{ p^j \in \mathbb{P}_0 : I^j = 1, \forall j \in \mathcal{J} \right\}$$

where $I^{j} = 1$: not withdrawn

Stage 3:

▶ Borrowers: choose p among \mathbb{P} or opt out

AGENTS' PROBLEMS

Borrower

 $\max \{0, v(\lambda)\}$

where

$$v\left(\lambda\right) = \max_{p \in \mathbb{P}} \left\{ \left(1 + r\right) p_s - \underbrace{\min\left\{\lambda, p_r\right\}}_{\text{default?}} \right\}$$

AGENTS' PROBLEMS

Borrower

where

 $\max \left\{ 0,v\left(\lambda \right) \right\}$

 $v(\lambda) = \max_{p \in \mathbb{P}} \left\{ (1+r) p_s - \underbrace{\min \left\{ \lambda, p_r \right\}}_{\text{default?}} \right\}$

Lender

$$\Pi^{j}\left(\boldsymbol{p}^{j},\mathbb{P}^{-j},\mathbb{P}_{0}^{-j}\right) = \max \left\{ \int \min \left\{ \boldsymbol{\lambda},\boldsymbol{p}_{r}^{j} \right\} \underline{d\Gamma\left(\left.\boldsymbol{\lambda}\right|\boldsymbol{p}^{j},\mathbb{P}^{-j}\cup\boldsymbol{p}^{j}\right)} - p_{s}^{j},0 \right\}$$
 distribution of quality

where

$$\mathbb{P}^{-j} = \left\{ p^k \in \mathbb{P}_0 : I^k = 1, \forall k \in \mathcal{J}/j \right\}$$

OPTIMAL BORROWER STRATEGY

Lemma 1. Full Participation and Partial Default

- 1. [Full participation] All borrowers sign a repo contract
- 2. [Default threshold] \exists ! threshold $\lambda_d \leq \bar{\lambda}$ s.t. all lower quality assets default

BORROWER CONTRACT CHOICE

Two contracts (wlog):

► Highest sales price & highest non-default value

$$p^d \equiv \underset{p \in \mathbb{P}}{\operatorname{argmax}} p_s, \qquad p^n \equiv \underset{p \in \mathbb{P}}{\operatorname{argmax}} \{(1+r) p_s - p_r\}$$

Lemma 2. Borrower Contract Choice

Defaulters:

$$P(\lambda) = p^d$$
 and $v(\lambda) > \bar{v}, \forall \lambda \in [\underline{\lambda}, \lambda_d)$

Non-defaulters:

$$P(\lambda) = p^n \text{ and } v(\lambda) = \bar{v}, \ \forall \lambda \in [\lambda_d, \bar{\lambda}]$$

POOLING EQUILIBRIUM

Proposition 1. Pooling

Equilibrium features a pooling contract $p^n = p^d = p$ with (p_s, p_r) :

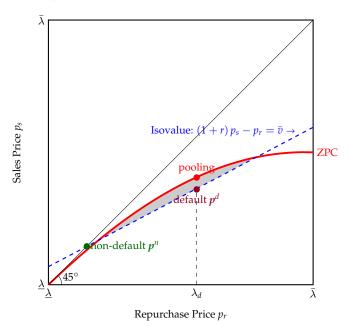
1. [Repurchase price]

$$p_r = \lambda_d$$

2. [*ZPC*]

$$p_s = \mathbb{E}\left[\min\left\{\lambda, p_r\right\}\right]$$

POOLING EQUILIBRIUM



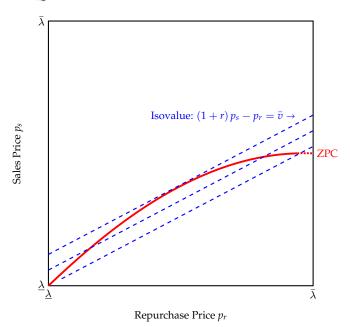
Unique Equilibrium

Proposition 2. Uniqueness

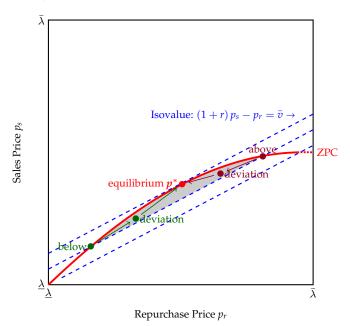
Unique equilibrium: a single zero-profit pooling contract

$$\boldsymbol{p}^* = \operatorname*{argmax}_{p_s = \mathbb{E}[\min\{\lambda, p_r\}]} \left\{ (1+r) \, p_s - p_r \right\}$$

Unique Equilibrium



Unique Equilibrium



ANALYTIC SOLUTION

Equilibrium Contract *p**

Repurchase price:

$$p_r^* = F^{-1} \left(\frac{r}{1+r} \right)$$

Sales price:

$$p_s^* = \mathbb{E}\left[\min\left\{\lambda, F^{-1}\left(\frac{r}{1+r}\right)\right\}\right]$$

Default rate:

$$d = \frac{r}{1+r}$$

OPTIMAL REPO CONTRACT DESIGN

Mechanism Design:

$$\max_{\{P(\cdot),\lambda^{p}\}} \int_{\lambda}^{\lambda^{p}} \left((1+r) P_{s}(\lambda) - \min \left\{ \lambda, P_{r}(\lambda) \right\} \right) dF(\lambda)$$

s.t.

- 1) Incentive Compatibility
- 2) Participation Constraint
- 3) Budget Balance

CONSTRAINED EFFICIENCY: SOLUTION

Condition 1. Heterogeneity.

$$(1+r)\,\mathbb{E}\left[\lambda\right]<\bar{\lambda}$$

Proposition 4. Constrained Efficiency

Under Condition 1, the optimal contract is a full-participation pooling contract:

$$p^p \in \underset{p_s = \mathbb{E}[\min\{\lambda, p_r\}]}{\operatorname{argmax}} p_s$$

st:

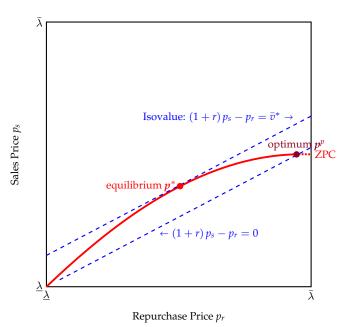
$$\bar{v} = (1+r)\,p_s - p_r \ge 0$$

Binding participation & max cross-subsidization:

$$\bar{v}^p = (1+r) p_s^p - p_r^p = 0$$

Optimal security design: Demarzo-Duffie (1999) & Biais-Mariotti (2005)

OPTIMAL REPO CONTRACT



SOURCE OF INEFFICIENCY

Market solution:

$$p^* = \underset{p_s = \mathbb{E}[\min\{\lambda, p_r\}]}{\operatorname{argmax}} \{(1+r) p_s - p_r\}$$

Planner solution:

$$\boldsymbol{p}^p \in \underset{p_s = \mathbb{E}[\min\{\lambda, p_r\}]}{\operatorname{argmax}} p_s$$

Source of inefficiency:

- ► Lack of separation: No
- Adverse selection: No
- Cream skimming: Yes

REPO VS. SALES: EFFICIENCY COMPARISON

Repos vs. Sales: tradeoff adverse selection vs. cream skimming

Statistics

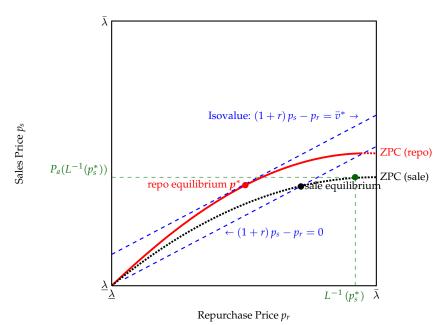
$$Z_{a}(\lambda) \equiv \mathbb{E}\left[\tilde{\lambda} \middle| \tilde{\lambda} \leq \lambda\right] \text{ and } L_{a}(\lambda) \equiv \mathbb{E}\left[\tilde{\lambda} \middle| \tilde{\lambda} \leq \lambda\right] F(\lambda), \ \forall \lambda \in \Lambda$$

Proposition 5. Sufficient Statistics

► Repo dominates sales iff:

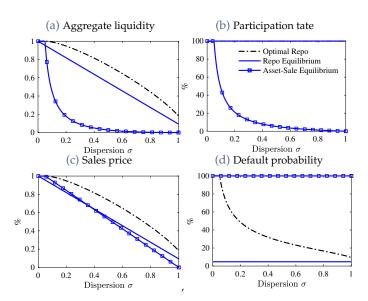
$$(1+r) Z_a \left(L_a^{-1}(p_s^*)\right) < L_a^{-1}(p_s^*)$$

REPO VS. SALES: EFFICIENCY COMPARISON

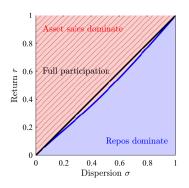


UNIFORM DISTRIBUTION EXAMPLE

Example. $\lambda \sim U[1 - \sigma, 1 + \sigma], r = 5\%$



UNIFORM DISTRIBUTION EXAMPLE



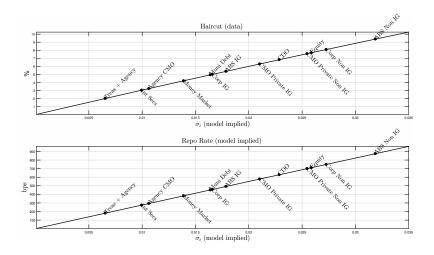
EXTENSIONS & VARIATIONS

- Lenders offer multiple contracts?
 - immaterial
- Tax on repos
 - immaterial with budget balance
- Lender's lack of commitment
 - effect on participation
- Repo under competitive search (Guerrieri, Shimer, and Wright (2010))
 - obtain unique pooling equilibrium
 - enriching contract space improves outcomes
 - repo always dominates asset sales

EVIDENCE FROM REPO MARKETS

- ▶ Big haircut movements (Gorton and Metrick)
 - no corresponding increase in risk
- What Drives Repo Haircuts? by Julliard, Liu, Seyedan, Todorov, Yuan
 - measure of greater uncertainty | information
 - collateral quality, maturity

HAIRCUTS IN THE DATA AND MODEL FIT



CONCLUSION

Summary

- ▶ Repos or collateralized debt, widely used in financial markets. Why?
- Natural outcome in markets with private information
- ▶ Puzzle: large haircuts in comparison with default
 - consistent with the equilibrium features here